Home
Class 12
MATHS
Find the real numbers x and y , if (x-i ...

Find the real numbers `x and y ,` if `(x-i y)(3+5i)` is the conjugate of `-6-24 i`

A

` x = -2, y=2`

B

` x = -3, y=3`

C

` x = 3, y=-3`

D

` x = -4, y=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the real numbers \( x \) and \( y \) such that \[ (x - iy)(3 + 5i) = \text{conjugate of } (-6 - 24i) \] ### Step 1: Find the conjugate of \(-6 - 24i\) The conjugate of a complex number \( a + bi \) is \( a - bi \). Therefore, the conjugate of \(-6 - 24i\) is: \[ -6 + 24i \] ### Step 2: Set up the equation Now we can set up the equation: \[ (x - iy)(3 + 5i) = -6 + 24i \] ### Step 3: Expand the left side We will expand the left-hand side: \[ (x - iy)(3 + 5i) = x \cdot 3 + x \cdot 5i - iy \cdot 3 - iy \cdot 5i \] Using \( i^2 = -1 \), we can simplify: \[ = 3x + 5xi - 3yi - 5y(-1) \] \[ = 3x + 5xi + 5y - 3yi \] Now, we can combine the real and imaginary parts: \[ = (3x + 5y) + (5x - 3y)i \] ### Step 4: Set the real and imaginary parts equal Now we equate the real and imaginary parts to those of \(-6 + 24i\): 1. Real part: \[ 3x + 5y = -6 \quad \text{(Equation 1)} \] 2. Imaginary part: \[ 5x - 3y = 24 \quad \text{(Equation 2)} \] ### Step 5: Solve the system of equations We have the following system of equations: 1. \( 3x + 5y = -6 \) 2. \( 5x - 3y = 24 \) To eliminate \( x \), we can multiply Equation 1 by 5 and Equation 2 by 3: - From Equation 1: \[ 15x + 25y = -30 \quad \text{(Equation 3)} \] - From Equation 2: \[ 15x - 9y = 72 \quad \text{(Equation 4)} \] ### Step 6: Subtract the equations Now, we subtract Equation 4 from Equation 3: \[ (15x + 25y) - (15x - 9y) = -30 - 72 \] \[ 25y + 9y = -102 \] \[ 34y = -102 \] ### Step 7: Solve for \( y \) Now we can solve for \( y \): \[ y = \frac{-102}{34} = -3 \] ### Step 8: Substitute \( y \) back to find \( x \) Now we substitute \( y = -3 \) back into Equation 1: \[ 3x + 5(-3) = -6 \] \[ 3x - 15 = -6 \] \[ 3x = 9 \] \[ x = 3 \] ### Final Answer Thus, the values of \( x \) and \( y \) are: \[ x = 3, \quad y = -3 \]

To solve the problem, we need to find the real numbers \( x \) and \( y \) such that \[ (x - iy)(3 + 5i) = \text{conjugate of } (-6 - 24i) \] ### Step 1: Find the conjugate of \(-6 - 24i\) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.3|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.4|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.1|4 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Find the real numbers x\ a n d\ y , if (x-i y)(3+5i) is the conjugate of -6-24 idot

Find the real numbers x and y if (x-yi) (3+5i) is the conjugate of -6 -24i

Find real number x and y if (x-iy)(4 + 7i) is the conjugate of 29-2i.

Find the numbers x and y if (x+3, y-6)=(5, 5) .

Find the real values of x\ a n d\ y ,\ if:(x+i y)(2-3i)=4+i

Find the real values of xa n dy , if (3x-7)+2i y=-5y+(5+x)i

Find the real values of x\ a n d\ y ,\ if:(1+i)(x+i y)=2-5i

Find the real numbers x,y such that ( iy+ x)(3+2i) = 1+ i

Find the real values of x\ a n d\ y ,\ if:(3x-2iy)(2+i)^2=10(1+i)

Find the real values of x and y for which (1+i)y^2+(6+i)=(2+i)x