Home
Class 12
MATHS
If n1, n2 are positive integers, then (1...

If `n_1, n_2` are positive integers, then `(1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i_5)^(n_2) + (1 + i^7)^(n_2)` is real if and only if :

Text Solution

AI Generated Solution

To determine when the expression \( (1 + i)^{n_1} + (1 + i^3)^{n_1} + (1 + i^5)^{n_2} + (1 + i^7)^{n_2} \) is real, we will simplify each term step by step. ### Step 1: Simplify \( (1 + i)^{n_1} \) We can express \( 1 + i \) in polar form: \[ 1 + i = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \sqrt{2} e^{i \frac{\pi}{4}} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.3|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.4|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.1|4 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

For a positive integer n , find the value of (1-i)^(n) (1 - 1/i)^(n)

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

If n is an odd integer, then (1 + i)^(6n) + (1-i)^(6n) is equal to

If n ge 1 is a positive integer, then prove that 3^(n) ge 2^(n) + n . 6^((n - 1)/(2))

If n is any positive integer, write the value of (i^(4n+1)-i^(4n-1))/2 .

For a positive integer n , find the value of ( 1-i)^n(1-1/i)^ndot

For a positive integer n , find the value of (1-i)^n(1-1/i)^ndot

The last positive integer n for which ((1+i)/(1-i))^(n) is real, is

What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n)?

What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n) ?