Home
Class 12
MATHS
If sqrt(x+i y)=+-(a+i b), then findsqrt(...

If `sqrt(x+i y)=+-(a+i b),` then find`sqrt( -x-i ydot)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\sqrt{-x - i y}\) given that \(\sqrt{x + i y} = \pm (a + i b)\). ### Step-by-step Solution: 1. **Square Both Sides**: We start with the equation: \[ \sqrt{x + i y} = \pm (a + i b) \] Squaring both sides gives: \[ x + i y = (a + i b)^2 \] 2. **Expand the Right Side**: Using the formula \((a + b)^2 = a^2 + 2ab + b^2\), we expand: \[ (a + i b)^2 = a^2 + 2ab i + (i b)^2 = a^2 + 2ab i - b^2 \] Thus, we have: \[ x + i y = (a^2 - b^2) + i(2ab) \] 3. **Compare Real and Imaginary Parts**: From the equation \(x + i y = (a^2 - b^2) + i(2ab)\), we can equate the real and imaginary parts: - Real part: \(x = a^2 - b^2\) - Imaginary part: \(y = 2ab\) 4. **Substitute for \(-x - i y\)**: We need to find \(\sqrt{-x - i y}\): \[ -x - i y = - (a^2 - b^2) - i(2ab) \] This simplifies to: \[ -x - i y = -a^2 + b^2 - i(2ab) \] 5. **Rearranging the Expression**: We can rewrite this as: \[ -x - i y = (b^2 - a^2) - i(2ab) \] 6. **Express as a Square**: We can recognize this as a perfect square: \[ (b - ai)^2 = (b^2 + a^2) - 2abi \] Thus, we can write: \[ \sqrt{-x - i y} = \sqrt{(b - ai)^2} = \pm (b - ai) \] ### Final Answer: \[ \sqrt{-x - i y} = \pm (b - ai) \]

To solve the problem, we need to find \(\sqrt{-x - i y}\) given that \(\sqrt{x + i y} = \pm (a + i b)\). ### Step-by-step Solution: 1. **Square Both Sides**: We start with the equation: \[ \sqrt{x + i y} = \pm (a + i b) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.4|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.5|12 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.2|9 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If (sqrt(8)+i)^(50)=3^(49)(a+i b) , then find the value of a^2+b^2dot

If sqrt(a+i b)=x+i y ,\ then possible value of sqrt(a-i b) is a. x^2+y^2 b. sqrt(x^2+y^2) c. x+i y d. x-i y e. sqrt(x^2-y^2)

If sqrt(x) + sqrt(y)=4, f i n d (dx/dy) a t (y = 1).

If x+i y=sqrt((a+i b)/(c+i d)), then write the value of (x^2+y^2)^2 .

If x=2i, y=-4, z=3i, and i=sqrt(-1) , then sqrt(x^(3)yz)=

If sin (log_(e)i^(i))=a+ib, where i=sqrt(-1), find a and b, hence and find cos(log_(e)i^(i)) .

For all x > 0 , which of the following expressions is equivalent to i/(sqrt(x) - i) , where i = sqrt(-1) ?

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

If (x+iy)^(1//3)=a+ib,"where "i=sqrt(-1),then ((x)/(a)+(y)/(b)) is equal to

If x + i y =(a+i b)/(a-i b), prove that x^2+y^2=1 .