Home
Class 12
MATHS
If I m((z-1)/(e^(thetai))+(e^(thetai))/(...

If `I m((z-1)/(e^(thetai))+(e^(thetai))/(z-1))=0` , then find the locus of `zdot`

Text Solution

Verified by Experts

The correct Answer is:
Circle having centre at `1 + i0` and radius 1

Let `u = (z -1)/(e^(thetai)) rArr (e^(thetai))/(z-1) = (1)/(u)`
Now `(u +(1)/(u)) - (baru +(1)/(baru))= 0`
` rArr (u- baru)(1(1)/(ubaru))=0`
If u is not purely real, then `ubaru = 1`
`rArr |(z-1)/(e^(thetai))| = 1 rArr |z-1|=1`
Hence, z lies on circle haivng centre at 1+ i0 and radius 1.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.10|10 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.11|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.8|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If |z-5i|=|z+5i| , then the locus of zdot

If w=z/[z-(1/3)i] and |w|=1, then find the locus of z

If Imz((z-1)/(2z+1))=-4 , then locus of z is

If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of the point representing in the complex plane.

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If complex number z lies on the curve |z - (- 1+ i)| = 1 , then find the locus of the complex number w =(z+i)/(1-i), i =sqrt-1 .

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If z is any complex number such that |3z-2|+|3z+2|=4 , then identify the locus of zdot

If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1 , find the locus of z in the complex plane

If cos e c^(-1)x+cos e c^(-1)y+cos e c^(-1)z=-(3pi)/2, find the value of x/y+y/z+z/xdot