Home
Class 12
MATHS
If z is nonreal root of [-1]^[1/7] then,...

If z is nonreal root of `[-1]^[1/7]` then,find the value of `z^86`+`z^175`+`z^289`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( z^{86} + z^{175} + z^{289} \) where \( z \) is a non-real root of \( (-1)^{1/7} \). ### Step-by-Step Solution: 1. **Identify the Non-Real Roots of \((-1)^{1/7}\)**: The seventh roots of \(-1\) can be expressed in polar form. The principal root is \( e^{i\pi} \), and the seventh roots are given by: \[ z_k = e^{i(\pi + 2k\pi)/7} \quad \text{for } k = 0, 1, 2, 3, 4, 5, 6 \] The non-real roots correspond to \( k = 1, 2, 3, 4, 5, 6 \). 2. **Express \( z^{86}, z^{175}, z^{289} \)**: Using the property of exponents, we can express \( z^{n} \) in terms of \( z^{7} \): \[ z^7 = -1 \] Hence, we can reduce the exponents modulo 7: - For \( z^{86} \): \[ 86 \mod 7 = 2 \quad \Rightarrow \quad z^{86} = z^2 \] - For \( z^{175} \): \[ 175 \mod 7 = 0 \quad \Rightarrow \quad z^{175} = z^0 = 1 \] - For \( z^{289} \): \[ 289 \mod 7 = 1 \quad \Rightarrow \quad z^{289} = z^1 = z \] 3. **Combine the Results**: Now we can combine the results: \[ z^{86} + z^{175} + z^{289} = z^2 + 1 + z \] 4. **Finding \( z^2 + z + 1 \)**: To evaluate \( z^2 + z + 1 \), we can use the fact that \( z = e^{i(\pi + 2k\pi)/7} \). For any non-real root, we can consider \( z = e^{i\pi/7} \) (for \( k=0 \)): \[ z^2 = e^{2i\pi/7}, \quad z = e^{i\pi/7} \] Thus: \[ z^2 + z + 1 = e^{2i\pi/7} + e^{i\pi/7} + 1 \] 5. **Using the Roots of Unity**: The expression \( z^2 + z + 1 \) can also be interpreted as the sum of the roots of the polynomial \( x^3 - 1 = 0 \) (excluding \( x = 1 \)), which gives us: \[ z^2 + z + 1 = 0 \quad \Rightarrow \quad z^2 + z + 1 = 0 \] Therefore, the value of \( z^2 + z + 1 \) is: \[ z^2 + z + 1 = 0 \] 6. **Final Result**: Thus, we conclude: \[ z^{86} + z^{175} + z^{289} = 0 \] ### Final Answer: \[ \boxed{0} \]

To solve the problem, we need to find the value of \( z^{86} + z^{175} + z^{289} \) where \( z \) is a non-real root of \( (-1)^{1/7} \). ### Step-by-Step Solution: 1. **Identify the Non-Real Roots of \((-1)^{1/7}\)**: The seventh roots of \(-1\) can be expressed in polar form. The principal root is \( e^{i\pi} \), and the seventh roots are given by: \[ z_k = e^{i(\pi + 2k\pi)/7} \quad \text{for } k = 0, 1, 2, 3, 4, 5, 6 ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise single correct Answer type|92 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.10|10 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z is a non real root of root(7)(-1) , then find the value of z^(86)+z^(175)+z^(289)dot

If z + z^(-1)= 1 , then find the value of z^(100) + z^(-100) .

If z=4+isqrt(7) , then find the value of z^2-4z^2-9z+91.

If |z +1| = z + 2(1 - i) , then the value of z

If z is a complex number, then find the minimum value of |z|+|z-1|+|2z-3|dot

If z is a complex number, then find the minimum value of |z|+|z-1|+|2z-3|dot

If 2z_1//3z_2 is a purely imaginary number, then find the value of "|"(z_1-z_2")"//(z_1+z_2)|dot

If 2z_1//3z_2 is a purely imaginary number, then find the value of "|"(z_1-z_2")"//(z_1+z_2)|dot

If (z-1)/(z+1) is a purely imaginary number (z ne - 1) , then find the value of |z| .

If z=1+2i , show that z^(2)-2z+5=0 . Hence find the value of z^(3) +7z^(2)-z+16 .