Home
Class 12
MATHS
Given alpha,beta, respectively, the fift...

Given `alpha,beta,` respectively, the fifth and the fourth non-real roots of units, then find the value of `(1+alpha)(1+beta)(1+alpha^2)(1+beta^2)(1+alpha^4)(1+beta^4)`

Text Solution

Verified by Experts

The correct Answer is:
0

As ` alpha` is the fifth nonreal root of unity, we have `alpha^(4) + alpha^(3) + alpha^(2) + alpha + 1=0`
`beta ` is the fouth nonreal root of unity . Therefore,
`beta^(3) + beta^(2) + beta + 1=0`
Now, `( 1 + alpha )(1 + alpha^(2))(1 + alpha^(4))(1+ beta)(1+ beta^(2))(1 + beta^(3))`
`= (1+ alpha + alpha^(2)+ alpha^(3) ) (1+alpha^(4)) (1+ beta + beta^(2) + beta^(3))(1+ beta^(3)) (because 1+ beta + beta^(2) + beta^(3) = 0)`
`= 0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise single correct Answer type|92 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.10|10 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are zeroes of 8x^(2)-6x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are zeroes of 5x^(2)-7x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are the complex cube roots of unity, then prove that (1 + alpha) (1 + beta) (1 + alpha)^(2) (1+ beta)^(2)=1

Let alpha and beta be the roots of x^2 - 5x - 1 = 0 then find the value of (alpha^15 + alpha^11 + beta^15 + beta^11)/(alpha^13 + beta^13) .

If alpha and beta are zeroes of the polynomial 3x^(2)+6x+1 , then find the value of alpha+beta+alpha beta .

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

If alpha and beta are roots of the equation px^(2)+qx+1=0 , then the value of alpha^(3)beta^(2)+alpha^(2)beta^(3) is

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha,beta are the roots of the equation x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+alpha^(-2)beta^(2) ?