Home
Class 12
MATHS
Consider the complex number z = (1 - isi...

Consider the complex number `z = (1 - isin theta)/(1+ icos theta)`.
The value of `theta` for which z is purely real are

A

`npi-(pi)/(4), n in I`

B

`pin +(pi)/(4) , n in I`

C

`npi, n in I`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`z=(1-i sin theta)/(1+ i cos theta) = ((1- isin theta)( 1- icos theta))/((1+ i cos theat)(1-i cos theta))`
`=((1-sin theta cos theta) - icos theta + sintheta)/((1+ cos^(2)theta))`
If z is purely real , then
`cos theta + sin theta=0`
or `tan theta = -1`
`rArr = npi - (pi)/(4), n in I`
If z is purely imaginary, `1- sin theta cos theta = 0 or sin theta coe theta = 1`, which is not possible
`|z|= |(1- isin theta)/(1+ i cos theta)| = (sqrt(1+ sin^(2) theta))/(sqrt(1+ cos^(2) theta))`
If `|z|=1`,then
`cos^(2) theta = sin theta^(2) theta`
`rArr tan^(2) theta = 1`
`rArr theta = npipm(pi)/(4), ninI`
We have,
`agr(z) = tan^(-1) ((-(cos theta + sin theta))/((1-sin theta cos theta)))`
Now `arg(z) = pi//4`
`rArr (-(costheta + sintheta))/((1-sin theta cos theta)) = 1`
`rArr cos^(2) theta+ sin^(2) + 2 sin theta cos theta = 1 + sin^(2) theta cos^(2) theta - 2 sin theta cos theta`
`rArr 1+ 4 sin theta cos theta = 1 + sin ^(2) theta cos^(2) theta`
`rArr sin^(2) theta cos^(2) theta - 4 sin theta cos theta =0`
`rArr sin theta cos theta (sin theta cos theta -4) = 0`
`rArr sin theta cos theta = 0 " "(because sin theta cos theta = 4" is not possible ")`
`rArr = (2n + 1) pi or theta ( 4n - 1) pi//2, n in I " "(because - cos theta - sin theta gt 0)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPES|33 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Consider the complex number z = (1 - isin theta)//(1+ icos theta) . The value of theta for which z is purely imaginary are

Consider the complex number z = (1 - isin theta)//(1+ icos theta) . The value of theta for which z is unimodular give by

Knowledge Check

  • If z = 1 -cos theta+ isin theta then |z| is equal to

    A
    `2 sin"" (theta)/(2)`
    B
    `2 cos ""(theta)/(2)`
    C
    `2| sin""(theta)/(2)|`
    D
    `2 |cos ""(theta)/(2)|`
  • Similar Questions

    Explore conceptually related problems

    Consider the complex number z = (1 - isin theta)/(1+ icos theta) . If agrument of z is pi/4 , then (a) theta = npi, n in I only (b) theta= (2n + 1), n in I only (c) both theta= npi and theta = (2n + 1)(pi)/(2), n in I (d) none of these

    If Z = (A sin theta + B cos theta)/(A + B) , then

    If A = sin^2 theta+ cos^4 theta , then for all real values of theta

    Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) real

    The maximum value of 1+sin(pi/4+theta)+2cos(pi/4-theta) for real values of theta is

    Find real value of theta for which (3+2i sin theta)/(1-2i sin theta) is purely real.

    If pi < theta < 2pi and z=1+cos theta + i sin theta , then write the value of |z|