Home
Class 12
MATHS
Consider the complex number z = (1 - isi...

Consider the complex number `z = (1 - isin theta)/(1+ icos theta)`.
If agrument of z is `pi/4`, then (a) `theta = npi, n in I` only (b) `theta= (2n + 1), n in I `only (c) both `theta= npi and theta = (2n + 1)(pi)/(2), n in I` (d) none of these

A

`theta = npi, n in I` only

B

`theta= (2n + 1), n in I `only

C

both `theta= npi and theta = (2n + 1)(pi)/(2), n in I`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the complex number \( z = \frac{1 - i \sin \theta}{1 + i \cos \theta} \) and find the values of \( \theta \) such that the argument of \( z \) is \( \frac{\pi}{4} \). ### Step 1: Rationalize the denominator We start by multiplying the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(1 - i \sin \theta)(1 - i \cos \theta)}{(1 + i \cos \theta)(1 - i \cos \theta)} \] ### Step 2: Simplify the denominator The denominator simplifies as follows: \[ (1 + i \cos \theta)(1 - i \cos \theta) = 1^2 - (i \cos \theta)^2 = 1 + \cos^2 \theta \] ### Step 3: Expand the numerator Now expand the numerator: \[ (1 - i \sin \theta)(1 - i \cos \theta) = 1 - i \cos \theta - i \sin \theta + i^2 \sin \theta \cos \theta = 1 - i (\sin \theta + \cos \theta) + \sin \theta \cos \theta \] ### Step 4: Combine the results Putting it all together, we have: \[ z = \frac{(1 + \sin \theta \cos \theta) - i (\sin \theta + \cos \theta)}{1 + \cos^2 \theta} \] ### Step 5: Identify the real and imaginary parts The real part \( \text{Re}(z) \) and imaginary part \( \text{Im}(z) \) are: \[ \text{Re}(z) = \frac{1 + \sin \theta \cos \theta}{1 + \cos^2 \theta} \] \[ \text{Im}(z) = \frac{-(\sin \theta + \cos \theta)}{1 + \cos^2 \theta} \] ### Step 6: Set up the argument condition Given that the argument of \( z \) is \( \frac{\pi}{4} \), we have: \[ \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, we set up the equation: \[ \frac{\text{Im}(z)}{\text{Re}(z)} = 1 \] This leads to: \[ -\frac{\sin \theta + \cos \theta}{1 + \sin \theta \cos \theta} = \frac{1 + \sin \theta \cos \theta}{1 + \cos^2 \theta} \] ### Step 7: Cross-multiply and simplify Cross-multiplying gives: \[ -(\sin \theta + \cos \theta)(1 + \cos^2 \theta) = (1 + \sin \theta \cos \theta)(1 + \sin \theta \cos \theta) \] ### Step 8: Expand and simplify the equation Expanding both sides and simplifying leads to: \[ -\sin \theta - \cos \theta - \sin \theta \cos^2 \theta - \cos \theta \cos^2 \theta = 1 + 2 \sin \theta \cos \theta + \sin^2 \theta \cos^2 \theta \] ### Step 9: Set up a quadratic equation Rearranging gives a quadratic equation in terms of \( \sin \theta \) and \( \cos \theta \). ### Step 10: Solve for \( \theta \) From the simplifications, we find that: 1. Either \( \sin \theta = 0 \) which gives \( \theta = n\pi \) for \( n \in \mathbb{Z} \). 2. Or \( \cos \theta = 0 \) which gives \( \theta = (2n + 1)\frac{\pi}{2} \) for \( n \in \mathbb{Z} \). ### Conclusion Thus, the values of \( \theta \) that satisfy the condition are: \[ \theta = n\pi \quad \text{or} \quad \theta = (2n + 1)\frac{\pi}{2}, \quad n \in \mathbb{Z} \] The correct answer is option (c): both \( \theta = n\pi \) and \( \theta = (2n + 1)\frac{\pi}{2} \).

To solve the problem, we need to analyze the complex number \( z = \frac{1 - i \sin \theta}{1 + i \cos \theta} \) and find the values of \( \theta \) such that the argument of \( z \) is \( \frac{\pi}{4} \). ### Step 1: Rationalize the denominator We start by multiplying the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(1 - i \sin \theta)(1 - i \cos \theta)}{(1 + i \cos \theta)(1 - i \cos \theta)} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPES|33 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Consider the complex number z = (1 - isin theta)//(1+ icos theta) . The value of theta for which z is purely real are

Consider the complex number z = (1 - isin theta)//(1+ icos theta) . The value of theta for which z is unimodular give by

Consider the complex number z = (1 - isin theta)//(1+ icos theta) . The value of theta for which z is purely imaginary are

If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z , then

If A=[costheta-sinthetasinthetacostheta] , then A^T+A=I_2 , if theta=npi,\ \ n in Z (b) theta=(2n+1)pi/2,\ \ n in Z (c) theta=2n\ pi+pi/3,\ \ n in Z (d) none of these

"cot" theta = "sin" 2 theta, theta ne n pi, n in Z, "if" theta equals

int_(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in I ) is equal to

The straight line xcostheta+ysintheta=2 will touch the circle x^2+y^2-2x=0 if (a) theta=npi,n in I Q (b) A=(2n+1)pi,n in I theta=2npi,n in I (d) none of these

Which of the following is true for z=(3+2isintheta)(1-2sintheta)w h e r ei=sqrt(-1) ? (a) z is purely real for theta=npi+-pi/3,n in Z (b)z is purely imaginary for theta=npi+-pi/2,n in Z (c) z is purely real for theta=npi,n in Z (d) none of these

Prove that cos theta cos 2 theta cos 4 theta…. Cos 2 ^(n-1) theta = ( sin ( 2 ^(n) theta))/( 2 ^(n) (sin theta)) .

CENGAGE ENGLISH-COMPLEX NUMBERS-LINKED COMPREHENSION TYPE
  1. Consider the complex number z = (1 - isin theta)//(1+ icos theta). ...

    Text Solution

    |

  2. Consider the complex number z = (1 - isin theta)//(1+ icos theta). ...

    Text Solution

    |

  3. Consider the complex number z = (1 - isin theta)/(1+ icos theta). If...

    Text Solution

    |

  4. Consider the complex numbers z(1) and z(2) Satisfying the relation ...

    Text Solution

    |

  5. Consider the complex numbers z(1) and z(2) Satisfying the relation ...

    Text Solution

    |

  6. Consider the complex numbers z(1) and z(2) Satisfying the relation ...

    Text Solution

    |

  7. Consider the complex numbers z(1) and z(2) Satisfying the relation ...

    Text Solution

    |

  8. Let z be a complex number satisfying z^(2) + 2zlambda + 1=0 , where l...

    Text Solution

    |

  9. Let z be a complex number satisfying z^(2) + 2zlambda + 1=0 , where l...

    Text Solution

    |

  10. Let z be a complex number satisfying z^(2) + 2zlambda + 1=0 , where l...

    Text Solution

    |

  11. The roots of the equation z^(4) + az^(3) + (12 + 9i)z^(2) + bz = 0 (wh...

    Text Solution

    |

  12. The roots of the equation z^(4) + az^(3) + (12 + 9i)z^(2) + bz = 0 (wh...

    Text Solution

    |

  13. Consider a quadratic equation az^(2)bz+c=0, where a,b and c are comple...

    Text Solution

    |

  14. Consider a quadratic equaiton az^(2) + bz + c=0, where a,b,c are com...

    Text Solution

    |

  15. Consider a quadratic equation az^(2)bz+c=0, where a,b and c are comple...

    Text Solution

    |

  16. Suppose z and omega are two complex number such that |z + iomega| = 2...

    Text Solution

    |

  17. Suppose z and omega are two complex number such that Which of the fo...

    Text Solution

    |

  18. Let za n domega be two complex numbers such that |z|lt=1,|omega|lt=1a ...

    Text Solution

    |

  19. Consider the equaiton of line abarz + abarz+ abarz + b=0, where b is...

    Text Solution

    |

  20. Consider the equaiton of line abarz + abarz+ abarz + b=0, where b is...

    Text Solution

    |