Home
Class 12
MATHS
Let z be a complex number satisfying z^...

Let z be a complex number satisfying `z^(2) + 2zlambda + 1=0` , where `lambda ` is a parameter which can take any real value.
For every large value of `lambda` the roots are approximately.

A

`-2lambda, 1//lambda`

B

`-lambda,-1//lambda`

C

`-2lambda, -(1)/(2lambda)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( z^2 + 2z\lambda + 1 = 0 \) for large values of the parameter \( \lambda \), we will follow these steps: ### Step 1: Identify the coefficients The given quadratic equation can be identified in the standard form \( az^2 + bz + c = 0 \), where: - \( a = 1 \) - \( b = 2\lambda \) - \( c = 1 \) ### Step 2: Apply the quadratic formula The roots of a quadratic equation are given by the formula: \[ z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values of \( a \), \( b \), and \( c \): \[ z = \frac{-2\lambda \pm \sqrt{(2\lambda)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] ### Step 3: Simplify the expression Calculating \( b^2 - 4ac \): \[ (2\lambda)^2 - 4 \cdot 1 \cdot 1 = 4\lambda^2 - 4 \] Now substituting this back into the formula for \( z \): \[ z = \frac{-2\lambda \pm \sqrt{4\lambda^2 - 4}}{2} \] Factoring out the 4 from the square root: \[ z = \frac{-2\lambda \pm 2\sqrt{\lambda^2 - 1}}{2} \] This simplifies to: \[ z = -\lambda \pm \sqrt{\lambda^2 - 1} \] ### Step 4: Analyze for large values of \( \lambda \) For large values of \( \lambda \), we can approximate \( \sqrt{\lambda^2 - 1} \): \[ \sqrt{\lambda^2 - 1} \approx \sqrt{\lambda^2} = \lambda \] Thus, the roots become: \[ z \approx -\lambda \pm \lambda \] ### Step 5: Calculate the approximate roots Calculating the two cases: 1. \( z \approx -\lambda + \lambda = 0 \) 2. \( z \approx -\lambda - \lambda = -2\lambda \) ### Conclusion For large values of \( \lambda \), the roots of the equation \( z^2 + 2z\lambda + 1 = 0 \) are approximately: \[ z \approx 0 \quad \text{and} \quad z \approx -2\lambda \]

To solve the equation \( z^2 + 2z\lambda + 1 = 0 \) for large values of the parameter \( \lambda \), we will follow these steps: ### Step 1: Identify the coefficients The given quadratic equation can be identified in the standard form \( az^2 + bz + c = 0 \), where: - \( a = 1 \) - \( b = 2\lambda \) - \( c = 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPES|33 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Let z be a complex number satisfying z^(2) + 2zlambda + 1=0 , where lambda is a parameter which can take any real value. The roots of this equation lie on a certain circle if

Let z be a complex number satisfying |z+16|=4|z+1| . Then

z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0 , then |z| is equal to

If z is a complex number satisfying |z^(2)+1|=4|z| , then the minimum value of |z| is

Let z be a complex number satisfying the equation z^(2)-(3+i)z+lambda+2i=0, whre lambdain R and suppose the equation has a real root , then find the non -real root.

If z is a complex number satisfying ∣z 2 +1∣=4∣z∣, then the minimum value of ∣z∣ is

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|

Let z be a complex number satisfying 1/2 le |z| le 4 , then sum of greatest and least values of |z+1/z| is :

Let z be a complex number satisfying the equation z^2-(3+i)z+m+2i=0\ ,where m in Rdot . Suppose the equation has a real root. Then the value of m is-

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

CENGAGE ENGLISH-COMPLEX NUMBERS-LINKED COMPREHENSION TYPE
  1. Let z be a complex number satisfying z^(2) + 2zlambda + 1=0 , where l...

    Text Solution

    |

  2. Let z be a complex number satisfying z^(2) + 2zlambda + 1=0 , where l...

    Text Solution

    |

  3. Let z be a complex number satisfying z^(2) + 2zlambda + 1=0 , where l...

    Text Solution

    |

  4. The roots of the equation z^(4) + az^(3) + (12 + 9i)z^(2) + bz = 0 (wh...

    Text Solution

    |

  5. The roots of the equation z^(4) + az^(3) + (12 + 9i)z^(2) + bz = 0 (wh...

    Text Solution

    |

  6. Consider a quadratic equation az^(2)bz+c=0, where a,b and c are comple...

    Text Solution

    |

  7. Consider a quadratic equaiton az^(2) + bz + c=0, where a,b,c are com...

    Text Solution

    |

  8. Consider a quadratic equation az^(2)bz+c=0, where a,b and c are comple...

    Text Solution

    |

  9. Suppose z and omega are two complex number such that |z + iomega| = 2...

    Text Solution

    |

  10. Suppose z and omega are two complex number such that Which of the fo...

    Text Solution

    |

  11. Let za n domega be two complex numbers such that |z|lt=1,|omega|lt=1a ...

    Text Solution

    |

  12. Consider the equaiton of line abarz + abarz+ abarz + b=0, where b is...

    Text Solution

    |

  13. Consider the equaiton of line abarz + abarz+ abarz + b=0, where b is...

    Text Solution

    |

  14. Consider the equaiton of line abarz + baraz + b=0, where b is a re...

    Text Solution

    |

  15. Consider the equation az + b bar(z) + c =0, where a,b,c inZ If |a| ...

    Text Solution

    |

  16. Consider the equation az + b barz + c =0, where a,b,c inZ If |a| = |...

    Text Solution

    |

  17. Consider the equation az + b bar(z) + c =0, where a,b,c inZ If |a| ...

    Text Solution

    |

  18. Complex number z satisfy the equation |z-(4/z)|=2 The difference b...

    Text Solution

    |

  19. Complex numbers z satisfy the equaiton |z-(4//z)|=2 The value of arg...

    Text Solution

    |

  20. Complex numbers z satisfy the equaiton |z-(4//z)|=2 Locus of z if |...

    Text Solution

    |