Home
Class 12
MATHS
A value of for which (2+3isintheta)/(1-...

A value of for which `(2+3isintheta)/(1-2isintheta)` purely imaginary, is : (1) `pi/3` (2) `pi/6` (3) `sin^(-1)((sqrt(3))/4)` (4) `sin^(-1)(1/(sqrt(3)))`

A

`(pi)/(6)`

B

`sin^(-1)((Sqrt(3))/(4))`

C

`sin^(-1)((1)/(sqrt(3))`

D

`(pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \theta \) for which the expression \( \frac{2 + 3i \sin \theta}{1 - 2i \sin \theta} \) is purely imaginary, we will follow these steps: ### Step 1: Write down the expression We start with the expression: \[ z = \frac{2 + 3i \sin \theta}{1 - 2i \sin \theta} \] ### Step 2: Rationalize the denominator To eliminate the imaginary part in the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(2 + 3i \sin \theta)(1 + 2i \sin \theta)}{(1 - 2i \sin \theta)(1 + 2i \sin \theta)} \] ### Step 3: Calculate the denominator The denominator simplifies as follows: \[ (1 - 2i \sin \theta)(1 + 2i \sin \theta) = 1^2 - (2i \sin \theta)^2 = 1 + 4 \sin^2 \theta \] ### Step 4: Calculate the numerator Now, we calculate the numerator: \[ (2 + 3i \sin \theta)(1 + 2i \sin \theta) = 2 \cdot 1 + 2 \cdot 2i \sin \theta + 3i \sin \theta \cdot 1 + 3i \sin \theta \cdot 2i \sin \theta \] This expands to: \[ 2 + 4i \sin \theta + 3i \sin \theta - 6 \sin^2 \theta = 2 - 6 \sin^2 \theta + (4i \sin \theta + 3i \sin \theta) \] Combining the imaginary parts gives: \[ 2 - 6 \sin^2 \theta + 7i \sin \theta \] ### Step 5: Combine the results Now we can write \( z \) as: \[ z = \frac{2 - 6 \sin^2 \theta + 7i \sin \theta}{1 + 4 \sin^2 \theta} \] ### Step 6: Separate real and imaginary parts The real part of \( z \) is: \[ \text{Re}(z) = \frac{2 - 6 \sin^2 \theta}{1 + 4 \sin^2 \theta} \] The imaginary part of \( z \) is: \[ \text{Im}(z) = \frac{7 \sin \theta}{1 + 4 \sin^2 \theta} \] ### Step 7: Set the real part to zero For \( z \) to be purely imaginary, the real part must be zero: \[ 2 - 6 \sin^2 \theta = 0 \] ### Step 8: Solve for \( \sin \theta \) Rearranging gives: \[ 6 \sin^2 \theta = 2 \quad \Rightarrow \quad \sin^2 \theta = \frac{1}{3} \quad \Rightarrow \quad \sin \theta = \frac{1}{\sqrt{3}} \] ### Step 9: Find \( \theta \) Now, we find \( \theta \): \[ \theta = \sin^{-1} \left( \frac{1}{\sqrt{3}} \right) \] ### Conclusion Thus, the value of \( \theta \) for which the expression is purely imaginary is: \[ \theta = \sin^{-1} \left( \frac{1}{\sqrt{3}} \right) \] The correct option is (4) \( \sin^{-1} \left( \frac{1}{\sqrt{3}} \right) \).

To solve the problem of finding the value of \( \theta \) for which the expression \( \frac{2 + 3i \sin \theta}{1 - 2i \sin \theta} \) is purely imaginary, we will follow these steps: ### Step 1: Write down the expression We start with the expression: \[ z = \frac{2 + 3i \sin \theta}{1 - 2i \sin \theta} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Matching Column|1 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPES|33 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Show that "sin"^(-1)(sqrt(3))/2+"tan"^(-1)1/(sqrt(3))=(2pi)/3

Find real q such that (3+2isintheta)/(1-2isintheta) is purely real.

Find real theta such that (3+2isintheta)/(1-2isintheta) is purely real.

Find real theta such that (3+2isintheta)/(1-2isintheta) is purely real.

Find real theta such that (3+2isintheta)/(1-2isintheta) is purely real.

Evaluate : sin[pi/2 - sin^(-1) (- sqrt(3)/2)]

Prove that: (9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2sqrt(2))/3)

If (3+2isintheta)/(1- 2isintheta) is real , then general value of theta is :

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

Prove that: (9pi)/8-9/4sin^(-1)1/3=9/4sin^(-1)(2sqrt(2))/3