Home
Class 12
MATHS
Let a,b in R and a^(2)+b^(2) ne 0. Sup...

Let `a,b in R` and `a^(2)+b^(2) ne 0`.
Suppose `S={z in C:z=(1)/(a+ibt),t in R,t ne 0}`, where `i=sqrt(-1)`. If z=x+iy and `z in S`, then (x,y) lies on

A

the circle with radius `(1)/(2a)` and centre `((1)/(2a),0)` for `a gt 0 be ne 0`

B

the circle with radius `-(1)/(2a)` and centre `(-(1)/(2) ,0) a lt 0, b ne 0`

C

the axis for `a ne 0, b =0`

D

the y-axis for `a = 0, bne 0`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`z =(1)/(a+ibt)`
`rArr x +iy = (a-ibt)/(a^(2) + b^(2)t^(2))`
`rArr x = (a)/(a^(2) + b^(2)t^(2)),y = (-bt)/(a^(2) =b^(2)t^(2))`
Eliminating t, we get
`x^(20 + y^(2) = (x)/(a)`
`rArr (x-(1)/(2a))^(2) +y^(2) = ((1)/(2a))^(2)`
`therefore `Option (1) is correct.
(3),(4) can be verified by putting b = 0 and a=0 respectively.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Matching Column|1 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|9 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Let 0 ne a, 0 ne b in R . Suppose S={z in C, z=1/(a+ibt)t in R, t ne 0} , where i=sqrt(-1) . If z=x+iy and z in S , then (x,y) lies on

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |z-1| =1 and arg (z)=theta , where z ne 0 and theta is acute, then (1-2/z) is equal to

Suppose cos x = 0 and cos(x+z)=1/2 . Then, the possible value (s) of z is (are).

If z = x + iy, x , y in R , then the louts Im (( z - 2 ) /(z + i)) = (1 ) /(2) represents : ( where i= sqrt ( - 1))

Let s ,\ t ,\ r be non-zero complex numbers and L be the set of solutions z=x+i y\ \ (x ,\ y in RR,\ \ i=sqrt(-1)) of the equation s z+t z +r=0 , where z =x-i y . Then, which of the following statement(s) is (are) TRUE? If L has exactly one element, then |s|!=|t| (b) If |s|=|t| , then L has infinitely many elements (c) The number of elements in Lnn{z :|z-1+i|=5} is at most 2 (d) If L has more than one element, then L has infinitely many elements

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)