Home
Class 12
MATHS
Let a , b ,xa n dy be real numbers such ...

Let `a , b ,xa n dy` be real numbers such that `a-b=1a n dy!=0.` If the complex number `z=x+i y` satisfies `I m((a z+b)/(z+1))=y` , then which of the following is (are) possible value9s) of x?| `-1-sqrt(1-y^2)` (b) `1+sqrt(1+y^2)` `-1+sqrt(1-y^2)` (d) `-1-sqrt(1+y^2)`

A

`-1-sqrt(1-y^(2))`

B

`1+sqrt(1+y^(2))`

C

`1-sqrt(1+y^(2))`

D

`-1+sqrt(1-y^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A, D

We have `Im((az + b)/(z+1))= y` and `z = x+iy`
`therefore Im((a(x+iy)+b)/(x+iy+1))= y`
`rArr IM(((ax+b+iay)(x+1-iy))/((x +1)^(2) +y^(2)))`
`rArr -y(ax + b)+ay(x+1)=y((x+1)^(2)+y^(2))`
`because y ne 0 and a-b=1`
`therefore (x+1)^(2) +y^(2) = 1`
`rArr x = - 1 pm sqrt(1-y^(2))`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Matching Column|1 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|9 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

The length of the tangent to the curve y=f(x) is equal to: A) ysqrt(1+(y1)^2) B) (y/(y1))sqrt(1+(y1)^2) C) ((y1)/y)sqrt(1+(y1)^2) D) y1sqrt(1+(y1)^2)

(dy)/(dx)=(sqrt(x^(2)-1))/(sqrt(y^(2)-1))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , show that (dy)/(dx)= (sqrt(1-y^(2)))/(sqrt(1-x^(2)))

dy/dx + sqrt(((1-y^2)/(1-x^2))) = 0

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y),p rov et h a t(dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If the complex number z=x+i y satisfies the condition |z+1|=1, then z lies on (a)x axis (b) circle with centre (-1,0) and radius 1 (c)y-axis (d) none of these