Home
Class 12
MATHS
Let z(k) = cos((2kpi)/(10)) -isin ((2kp...

Let `z_(k) = cos((2kpi)/(10)) -isin ((2kpi)/(10)), k = 1,2,…..,9`

Text Solution

Verified by Experts

The correct Answer is:
1

`z_(k)` is `10^(th)` root of unity.
So, `barz_(k)` will also be `10^(th)` root of unity.
Take `barz(j)` as `barz_(k)`.
b `z_(1) ne 0 ` take `z = (z_(k))/(z_(1))` we can always find z.
c `z^(10)-1= (z-1)(z-z_(1))….(z-z_(9))`
`rArr (z-z_(1)) (z-z_(2))....(z-z_(9))`
`= 1+ z+ z^(2) + .....+ ^(9) AA z in ` complex number
Put z = 1
`rArr (1-z_(1)) (1-z_(2)) .....(1-z_(9)) = 10`
`rArr (|1-z_(1)||1-Z_(2)|......|1-z_(9)|)/(10) = 1`
d `1+z_(1)+z_(2)+.......+z_(9) = 0`
`rArr Re (1) + Re(z_(1)) + .....+Re(z_(9)) = 0`
`rArr Re(z_(1)) + Re(z_(2)) + .......+Re(z_(9)) = -1`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Matching Column|1 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

For any integer k , let alpha_k=cos((kpi)/7)+isin((kpi)/7),w h e r e i=sqrt(-1)dot Value of the expression (sum_(k=1)^(12)|alpha_(k+1)-alpha_k|)/(sum_(k=1)^3|alpha_(4k-1)-alpha_(4k-2)|) is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let P(k)=(1+cos(pi/(4k))) (1+cos(((2k-1)pi)/(4k))) (1+cos(((2k+1)pi)/(4k)))(1+cos(((4k-1)pi)/(4k)))dot Then Prove that (a) P(3)=1/(16) (b) P(4)=(2-sqrt(2))/(16) (c) P(5)=(3-sqrt(5))/(32) (d) P(6)(2-sqrt(3))/(16)

Let arg(z_(k))=((2k+1)pi)/(n) where k=1,2,………n . If arg(z_(1),z_(2),z_(3),………….z_(n))=pi , then n must be of form (m in z)

The least positive integral value of k for which [(cos.(2pi)/(7),-sin.(2pi)/(7)),(sin.(2pi)/(7),cos.(2pi)/(7))]^(k)=[(1,0),(0,1)] is

If k in I such that lim_(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^(2n)=0, then

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to