Home
Class 12
MATHS
If Sigma(r=1)^(n) T(r)=n(2n^(2)+9n+13), ...

If `Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13)`, then find the sum `Sigma_(r=1)^(n)sqrt(T_(r))`.

Text Solution

AI Generated Solution

To solve the problem, we need to find the sum \( \Sigma_{r=1}^{n} \sqrt{T_r} \) given that \( \Sigma_{r=1}^{n} T_r = n(2n^2 + 9n + 13) \). ### Step 1: Find \( T_n \) We know that: \[ T_n = S_n - S_{n-1} \] where \( S_n = \Sigma_{r=1}^{n} T_r \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.89|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.90|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.87|1 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If sum_(r=1)^n T_r=n(2n^2+9n+13), then find the sum sum_(r=1)^nsqrt(T_r)dot

If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to

If Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3) then find Sigma_(r=1)^(n) 1/T_r

If S_(n)=sum_(r=1)^(n) a_(r)=(1)/(6)n(2n^(2)+9n+13) , then sum_(r=1)^(n)sqrt(a_(r)) equals

If sum_(r=1)^n T_r=(3^n-1), then find the sum of sum_(r=1)^n1/(T_r) .

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

Find the sum Sigma_(n=1)^(oo)(3n^2+1)/((n^2-1)^3)

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to