Home
Class 12
MATHS
Let a1,a2,.........an be real numbers ...

Let `a_1,a_2,.........a_n` be real numbers such that `sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4` then find the value of `sum_(i=1)^100 a_i`

Text Solution

Verified by Experts

Let `sqrt(a_(i)-(i-1))=b_(i)`
So, we have
`sum_(i=1)^(n)b_(i)=1/2sum_(i=1)^(n)(b_(i)^(2)+(i-1))-(n(n-3))/4`
`rArrsum_(i=1)^(n)b_(i)=1/2sum_(i=1)^(n)b_(i)^(2)+1/2(n(n-1))/2-(n(n-3))/4`
`rArrsum_(i=1)^(n)b_(i)^(2)-2sum_(i=1)^(n)b_(i)+n=0`
`sum_(i=1)^(n)(b_(i)^(2)-2b_(i)+1)=0`
`rArrsum_(i=1)^(n)(b_(i)-1)^(2)=0`
`rArrb_(i)-1=0`
`rArrb_(i)=1`
`rArra_(i)=i`
`thereforesum_(i=1)^(100)=1+2+3+....+100=5050`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES 5.12|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES 5.13|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES 5.10|1 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+.......a_(n-1)+2a_n is

If a_r>0, r in N and a_1.a_2,....a_(2n) are in A.P then (a_1+a_2)/(sqrta_1+sqrta_2)+(a_2+a_(2n-1))/(sqrta_2+sqrta_3)+.....+(a_n+a_(n+1))/(sqrt a_n+sqrta_(n+1))=

Let a_1,a_2,.....,a_n be fixed real numbers and define a function f(x) = (x-a_1) (x-a_2).....(x-a_n) . What is (lim)_(x->a_1)f(x) ? For some a!=a_1,a_2,.....,a_n , compute (lim)_(x->a)f(x)

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_2)+sqrt(a_3))+ ..+1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_2)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot