Home
Class 12
MATHS
If a(n+1)=1/(1-an) for n>=1 and a3=a1...

If `a_(n+1)=1/(1-a_n)` for `n>=1` and `a_3=a_1`. then find the value of `(a_2001)^2001`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the recurrence relation given by \( a_{n+1} = \frac{1}{1 - a_n} \) and the condition \( a_3 = a_1 \). ### Step-by-Step Solution: 1. **Start with the recurrence relation**: \[ a_{n+1} = \frac{1}{1 - a_n} \] 2. **Calculate \( a_2 \)**: \[ a_2 = \frac{1}{1 - a_1} \] 3. **Calculate \( a_3 \)**: \[ a_3 = \frac{1}{1 - a_2} = \frac{1}{1 - \frac{1}{1 - a_1}} = \frac{1 - a_1}{-a_1} = \frac{1 - a_1}{-a_1} \] 4. **Set \( a_3 = a_1 \)** (given condition): \[ a_1 = \frac{1 - a_1}{-a_1} \] 5. **Cross-multiply to eliminate the fraction**: \[ a_1 \cdot (-a_1) = 1 - a_1 \] \[ -a_1^2 = 1 - a_1 \] 6. **Rearrange the equation**: \[ a_1^2 - a_1 + 1 = 0 \] 7. **Use the quadratic formula to find \( a_1 \)**: \[ a_1 = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2} \] \[ a_1 = \frac{1 \pm i\sqrt{3}}{2} \] 8. **Since \( a_3 = a_1 \), we have \( a_2 = a_1 \) as well**: \[ a_1 = a_2 = a_3 = \ldots = a_n \text{ for all } n \] 9. **Determine \( a_{2001} \)**: \[ a_{2001} = a_1 = \frac{1 + i\sqrt{3}}{2} \text{ or } a_{2001} = \frac{1 - i\sqrt{3}}{2} \] 10. **Calculate \( (a_{2001})^{2001} \)**: \[ (a_{2001})^{2001} = \left(\frac{1 + i\sqrt{3}}{2}\right)^{2001} \text{ or } \left(\frac{1 - i\sqrt{3}}{2}\right)^{2001} \] 11. **Since both roots are complex conjugates, their powers will yield the same magnitude**: \[ |a_{2001}| = 1 \quad \text{(as the modulus of both roots is 1)} \] \[ (a_{2001})^{2001} = (-1)^{2001} = -1 \quad \text{(as the argument will rotate)} \] ### Final Answer: \[ (a_{2001})^{2001} = -1 \]

To solve the problem, we need to analyze the recurrence relation given by \( a_{n+1} = \frac{1}{1 - a_n} \) and the condition \( a_3 = a_1 \). ### Step-by-Step Solution: 1. **Start with the recurrence relation**: \[ a_{n+1} = \frac{1}{1 - a_n} \] ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.2|10 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.3|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES 5.15|1 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Let {a_n}(ngeq1) be a sequence such that a_1=1,a n d3a_(n+1)-3a_n=1 for all ngeq1. Then find the value of a_(2002.)

Let {a_n}(ngeq1) be a sequence such that a_1=1,a n d3a_(n+1)-3a_n=1fora l lngeq1. Then find the value of a_(2002.)

Consider the sequence defined by a_n=a n^2+b n+cdot If a_1=1,a_2=5,a n da_3=11 , then find the value of a_(10)dot

If a_1=1a n da_(n+1)=(4+3a_n)/(3+2a_n),ngeq1,a n dif("lim")_(nvecoo)a_n=a , then find the value of adot

If a_n = (a_(n-1) xx a_(n-2))/(2), a_5 = -6 and a_6 = -18 , what is the value of a_3 ?

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If b_(n+1)=1/(1-b_n)forngeq1a n db_1=b_3, t h e nsum_(r=1)^(2001)b r^ 2001 is equal to a. 2001 b. -2001 c. 0 d. none of these

A sequence of number a_1, a_2, a_3,…..,a_n is generated by the rule a_(n+1) = 2a_(n) . If a_(7) - a_(6) = 96 , then what is the value of a_(7) ?