Home
Class 12
MATHS
Let a1,a2,a3 ….and b1 , b2 , b3 … be two...

Let `a_1,a_2,a_3` ….and `b_1 , b_2 , b_3 …` be two geometric progressions with `a_1= 2 sqrt(3)` and `b_1= 52/9 sqrt(3)` If `3a_99b_99=104` then find the value of `a_1 b_1+ a_2 b_2+…+a_nb_n`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given information and derive the required result. ### Step 1: Understand the given information We have two geometric progressions (GPs): - The first GP: \( a_1, a_2, a_3, \ldots \) with \( a_1 = 2\sqrt{3} \) - The second GP: \( b_1, b_2, b_3, \ldots \) with \( b_1 = \frac{52}{9}\sqrt{3} \) We also know that: \[ 3a_{99}b_{99} = 104 \] ### Step 2: Express \( a_{99} \) and \( b_{99} \) In a geometric progression, the \( n \)-th term can be expressed as: - \( a_n = a_1 \cdot r_1^{n-1} \) - \( b_n = b_1 \cdot r_2^{n-1} \) Thus, we can express \( a_{99} \) and \( b_{99} \) as: \[ a_{99} = a_1 \cdot r_1^{98} \] \[ b_{99} = b_1 \cdot r_2^{98} \] ### Step 3: Substitute into the equation Substituting \( a_{99} \) and \( b_{99} \) into the equation: \[ 3a_{99}b_{99} = 3(a_1 \cdot r_1^{98})(b_1 \cdot r_2^{98}) = 104 \] This simplifies to: \[ 3(a_1 b_1) (r_1 r_2)^{98} = 104 \] ### Step 4: Substitute the values of \( a_1 \) and \( b_1 \) Now substituting \( a_1 = 2\sqrt{3} \) and \( b_1 = \frac{52}{9}\sqrt{3} \): \[ 3(2\sqrt{3} \cdot \frac{52}{9}\sqrt{3})(r_1 r_2)^{98} = 104 \] Calculating \( a_1 b_1 \): \[ a_1 b_1 = 2\sqrt{3} \cdot \frac{52}{9}\sqrt{3} = \frac{104}{9} \cdot 3 = \frac{312}{9} = \frac{104}{3} \] ### Step 5: Substitute \( a_1 b_1 \) back into the equation Now substituting \( a_1 b_1 \) into the equation: \[ 3 \cdot \frac{104}{3} (r_1 r_2)^{98} = 104 \] This simplifies to: \[ 104 (r_1 r_2)^{98} = 104 \] ### Step 6: Solve for \( r_1 r_2 \) Dividing both sides by 104: \[ (r_1 r_2)^{98} = 1 \] Thus: \[ r_1 r_2 = 1 \] ### Step 7: Find the sum \( a_1b_1 + a_2b_2 + \ldots + a_nb_n \) The sum of the products of the corresponding terms in the two GPs can be expressed as: \[ S_n = a_1b_1 + a_2b_2 + \ldots + a_nb_n \] Using the formula for the sum of products in GPs: \[ S_n = a_1b_1 \cdot \frac{1 - (r_1 r_2)^n}{1 - r_1 r_2} \] Since \( r_1 r_2 = 1 \): \[ S_n = a_1b_1 \cdot n \] ### Step 8: Substitute \( n = 99 \) and \( a_1 b_1 = \frac{104}{3} \) Thus: \[ S_{99} = \frac{104}{3} \cdot 99 \] Calculating this gives: \[ S_{99} = \frac{104 \cdot 99}{3} = \frac{10296}{3} = 3432 \] ### Final Answer The value of \( a_1b_1 + a_2b_2 + \ldots + a_nb_n \) is: \[ \boxed{3432} \]

To solve the problem step by step, we will follow the given information and derive the required result. ### Step 1: Understand the given information We have two geometric progressions (GPs): - The first GP: \( a_1, a_2, a_3, \ldots \) with \( a_1 = 2\sqrt{3} \) - The second GP: \( b_1, b_2, b_3, \ldots \) with \( b_1 = \frac{52}{9}\sqrt{3} \) We also know that: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.5|10 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.6|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.3|9 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Let a_1,a_2,a_3..... be an arithmetic progression and b_1,b_2,b_3...... be a geometric progression. The sequence c_1,c_2,c_3,.... is such that c_n=a_n+b_n AA n in N. Suppose c_1=1.c_2=4.c_3=15 and c_4=2. The common ratio of geometric progression is equal to "(a) -2 (b) -3 (c) 2 (d) 3 "

If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is (a_1-a_2)x+(b_1-b_2)y+c=0 , then find the value of c .

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

y^2=21-x x=5 The solutions to the system of equation above are (a_1,b_1) and (a_2,b_2) . What are the values of b_1 and b_2 ?

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .

Let b_i > 1 for i =1, 2,....,101. Suppose log_e b_1, log_e b_2,....,log_e b_101 are in Arithmetic Progression (A.P.) with the common difference log_e 2 . Suppose a_1, a_2,...,a_101 are in A.P. such that a_1 = b_1 and a_51 = b_51 . If t = b_1 + b_2+.....+b_51 and s = a_1+a_2+....+a_51 then

Consider an A. P .a_1,a_2,a_3,..... such that a_3+a_5+a_8 =11and a_4+a_2=-2 then the value of a_1+a_6+a_7 is.....

If the equation of the locus of a point equidistant from the points (a_1,b_1) and (a_2,b_2) is (a_1-a_2)x+(b_2+b_2)y+c=0 , then the value of C is