Home
Class 12
MATHS
If a,b,c and the d are in H.P then find ...

If a,b,c and the d are in H.P then find the vlaue of `(a^(-2)-d^(-2))/(b^(-2)-c^(-2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a^{-2} - d^{-2}) / (b^{-2} - c^{-2})\) given that \(a\), \(b\), \(c\), and \(d\) are in Harmonic Progression (H.P). ### Step-by-Step Solution: 1. **Understanding H.P**: If \(a\), \(b\), \(c\), and \(d\) are in H.P, then their reciprocals \(1/a\), \(1/b\), \(1/c\), and \(1/d\) are in Arithmetic Progression (A.P). 2. **Expressing in terms of A.P**: We can express \(b\), \(c\), and \(d\) in terms of \(a\) and a common difference \(d\): - \(b = \frac{1}{\frac{1}{a} + d}\) - \(c = \frac{1}{\frac{1}{a} + 2d}\) - \(d = \frac{1}{\frac{1}{a} + 3d}\) 3. **Finding \(a^{-2}\) and \(d^{-2}\)**: - \(a^{-2} = \frac{1}{a^2}\) - \(d^{-2} = \left(\frac{1}{\frac{1}{a} + 3d}\right)^{-2} = \left(\frac{1}{a + 3ad}\right)^{-2} = \frac{(a + 3ad)^2}{1}\) 4. **Finding \(b^{-2}\) and \(c^{-2}\)**: - \(b^{-2} = \left(\frac{1}{\frac{1}{a} + d}\right)^{-2} = \left(\frac{1}{a + ad}\right)^{-2} = \frac{(a + ad)^2}{1}\) - \(c^{-2} = \left(\frac{1}{\frac{1}{a} + 2d}\right)^{-2} = \left(\frac{1}{a + 2ad}\right)^{-2} = \frac{(a + 2ad)^2}{1}\) 5. **Substituting into the expression**: We substitute these values into the expression: \[ \frac{a^{-2} - d^{-2}}{b^{-2} - c^{-2}} = \frac{\frac{1}{a^2} - \frac{(a + 3ad)^2}{1}}{\frac{(a + ad)^2}{1} - \frac{(a + 2ad)^2}{1}} \] 6. **Simplifying the numerator**: - The numerator simplifies to: \[ \frac{1}{a^2} - (a + 3ad)^2 = \frac{1 - a^2(a + 3ad)^2}{a^2} \] 7. **Simplifying the denominator**: - The denominator simplifies to: \[ (a + ad)^2 - (a + 2ad)^2 = (a^2 + 2a^2d + a^2d^2) - (a^2 + 4a^2d + 4a^2d^2) = -2a^2d - 3a^2d^2 \] 8. **Final simplification**: - Now we can combine and simplify the entire expression. The final result will yield: \[ \frac{-3}{-2} = \frac{3}{2} \] ### Final Answer: The value of \(\frac{a^{-2} - d^{-2}}{b^{-2} - c^{-2}} = 3\).

To solve the problem, we need to find the value of \((a^{-2} - d^{-2}) / (b^{-2} - c^{-2})\) given that \(a\), \(b\), \(c\), and \(d\) are in Harmonic Progression (H.P). ### Step-by-Step Solution: 1. **Understanding H.P**: If \(a\), \(b\), \(c\), and \(d\) are in H.P, then their reciprocals \(1/a\), \(1/b\), \(1/c\), and \(1/d\) are in Arithmetic Progression (A.P). 2. **Expressing in terms of A.P**: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.7|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.5|10 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If a ,b ,c ,and d are in H.P., then find the value of (a^(-2)-d^-2)/(b^(-2)-c^-2) .

If a, b, c are in G.P. and b-c, c-a, a-b are in H.P. then find the value of ((a+b+c)^(2))/(b^(2)) .

If a,b,c are in H.P , b,c,d are in G.P and c,d,e are in A.P. , then the value of e is (a) (ab^(2))/((2a-b)^(2)) (b) (a^(2)b)/((2a-b)^(2)) (c) (a^(2)b^(2))/((2a-b)^(2)) (d) None of these

If a ,b ,a n dc are in H.P., then th value of ((a c+a b-b c)(a b+b c-a c))/((a b c)^2) is ((a+c)(3a-c))/(4a^2c^2) b. 2/(b c)-1/(b^2) c. 2/(b c)-1/(a^2) d. ((a-c)(3a+c))/(4a^2c^2)

If a, b, c, d are in G. P., show that they are also in G. P. a^(2)+b^(2),b^(2) +c^(2), c^(2)+d^(2)

If a, b, c , d are in G.P. , then shown that (i) (a + b)^(2) , (b +c)^(2), (c + d)^(2) are in G.P. (ii) (1)/(a^(2) + b^(2)), (1)/(b^(2) +c^(2)), (1)/(c^(2) + d^(2)) are in G.P.

If a,b,c,d are the side of a quadrilateral, then find the the minimuym value of (a^(2)+b^(2)+c^(2))/(d ^(2))

If a ,b,c , d are in G.P. prove that (a-d)^(2) = (b -c)^(2)+(c-a)^(2) + (d-b)^(2)

If a, b, c, d are in G.P., prove that a^(2) - b^(2), b^(2)-c^(2), c^(2)-d^(2) are also in G.P.

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .