Home
Class 12
MATHS
Find the sum (1^2)/(2)+(3^2)/(2^2)+(5^2)...

Find the sum `(1^2)/(2)+(3^2)/(2^2)+(5^2)/(2^3)+(7^2)/(2^4)+….oo`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = \frac{1^2}{2} + \frac{3^2}{2^2} + \frac{5^2}{2^3} + \frac{7^2}{2^4} + \ldots \) step by step, we can follow these steps: ### Step 1: Identify the series The series can be expressed as: \[ S = \sum_{n=0}^{\infty} \frac{(2n+1)^2}{2^{n+1}} \] where \( (2n+1) \) represents the odd numbers. ### Step 2: Rewrite the series We can rewrite the series as: \[ S = \frac{1^2}{2^1} + \frac{3^2}{2^2} + \frac{5^2}{2^3} + \frac{7^2}{2^4} + \ldots \] This can also be expressed as: \[ S = \sum_{n=0}^{\infty} \frac{(2n+1)^2}{2^{n+1}} = \sum_{n=0}^{\infty} \frac{(4n^2 + 4n + 1)}{2^{n+1}} \] ### Step 3: Split the series We can split the series into three parts: \[ S = \sum_{n=0}^{\infty} \frac{4n^2}{2^{n+1}} + \sum_{n=0}^{\infty} \frac{4n}{2^{n+1}} + \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \] ### Step 4: Calculate each part 1. **For the third part**: \[ \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} = \frac{1/2}{1 - 1/2} = 1 \] 2. **For the second part** (using the formula for the sum of an arithmetic series): \[ \sum_{n=0}^{\infty} \frac{n}{2^{n+1}} = \frac{1/2}{(1 - 1/2)^2} = 2 \] Therefore, \[ 4 \cdot \sum_{n=0}^{\infty} \frac{n}{2^{n+1}} = 4 \cdot 2 = 8 \] 3. **For the first part** (using the formula for the sum of squares): \[ \sum_{n=0}^{\infty} \frac{n^2}{2^{n+1}} = \frac{2}{(1 - 1/2)^3} = 8 \] Therefore, \[ 4 \cdot \sum_{n=0}^{\infty} \frac{n^2}{2^{n+1}} = 4 \cdot 8 = 32 \] ### Step 5: Combine all parts Now we can combine all parts: \[ S = 32 + 8 + 1 = 41 \] ### Step 6: Final result Thus, the sum of the series is: \[ \boxed{41} \] ---

To solve the series \( S = \frac{1^2}{2} + \frac{3^2}{2^2} + \frac{5^2}{2^3} + \frac{7^2}{2^4} + \ldots \) step by step, we can follow these steps: ### Step 1: Identify the series The series can be expressed as: \[ S = \sum_{n=0}^{\infty} \frac{(2n+1)^2}{2^{n+1}} \] where \( (2n+1) \) represents the odd numbers. ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.6|11 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum Sigma_(n=1)^(oo)(3n^2+1)/((n^2-1)^3)

Find the sum Sigma_(r=1)^(oo) (r-2)/((r+2)(r+3)(r+4))

Find the sum 5^(2)+ 6^(2) + 7^(2) + ... + 20^(2) .

Find the sum (1^4)/(1xx3)+(2^4)/(3xx5)+(3^4)/(5xx7)+......+(n^4)/((2n-1)(2n+1))

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

The sum of the infinite series, 1 ^(2) -(2^(2))/(5) + (3 ^(2))/(5 ^(2))+ (4^(2))/(5 ^(3))+ (5 ^(2))/(5 ^(4))-(6 ^(2))/(5 ^(5)) + ..... is:

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

Find the sum 3/(1xx2)xx1/2+4/(2xx3)xx(1/2)^2+5/(3xx4)xx(1/2)^2+ ton terms.

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

Find the sum of the series 1/(3^2+1)+1/(4^2+2)+1/(5^2+3)+1/(6^2+4)+oo