Home
Class 12
MATHS
Find the sum 11^2-1^2+12^2-2^2+13^2-3^2+...

Find the sum `11^2-1^2+12^2-2^2+13^2-3^2+……+20^2-10^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the series: \[ S = 11^2 - 1^2 + 12^2 - 2^2 + 13^2 - 3^2 + \ldots + 20^2 - 10^2 \] ### Step-by-Step Solution: 1. **Rewrite the Series**: We can separate the positive and negative terms in the series: \[ S = (11^2 + 12^2 + 13^2 + \ldots + 20^2) - (1^2 + 2^2 + 3^2 + \ldots + 10^2) \] 2. **Sum of Squares from 11 to 20**: The sum of squares from \(11^2\) to \(20^2\) can be expressed using the formula for the sum of squares of the first \(n\) natural numbers: \[ \text{Sum of squares from } 1 \text{ to } n = \frac{n(n + 1)(2n + 1)}{6} \] Therefore, the sum of squares from \(1\) to \(20\) is: \[ S_{20} = \frac{20(20 + 1)(2 \cdot 20 + 1)}{6} = \frac{20 \cdot 21 \cdot 41}{6} \] 3. **Sum of Squares from 1 to 10**: Similarly, the sum of squares from \(1\) to \(10\) is: \[ S_{10} = \frac{10(10 + 1)(2 \cdot 10 + 1)}{6} = \frac{10 \cdot 11 \cdot 21}{6} \] 4. **Calculate the Sums**: Now we can calculate both sums: \[ S_{20} = \frac{20 \cdot 21 \cdot 41}{6} = \frac{17220}{6} = 2870 \] \[ S_{10} = \frac{10 \cdot 11 \cdot 21}{6} = \frac{2310}{6} = 385 \] 5. **Substituting Back into the Original Expression**: Now substituting back into our expression for \(S\): \[ S = S_{20} - S_{10} = 2870 - 385 = 2485 \] 6. **Final Calculation**: Therefore, the final answer is: \[ S = 2485 \] ### Final Answer: The sum \( S = 2485 \).

To solve the problem, we need to find the sum of the series: \[ S = 11^2 - 1^2 + 12^2 - 2^2 + 13^2 - 3^2 + \ldots + 20^2 - 10^2 \] ### Step-by-Step Solution: 1. **Rewrite the Series**: We can separate the positive and negative terms in the series: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.7|4 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of 11^2+12^2+13^2++20^2dot

Find the sum 1^2+(1^2+2^2)+(1^2+2^2+3^2)+ up to 22nd term.

Find the sum 1^2+(1^2+2^2)+(1^2+2^2+3^2)+ up to 22nd term.

Find the sum of the series: 1^2-2^2+3^2-4^2+.....-2008^2+2009^2 .

Find the sum (1^2)/2-(3^2)/(2^2)+(5^2)/(2^3)-(7^2)/(2^4)+....oodot

Find the sum 5^(2)+ 6^(2) + 7^(2) + ... + 20^(2) .

Find the sum of the following series to n term: (n^2-1^2)+2(n^2-2^2)+3(n^2-3^2)+……...

Find the sum 1+(1+2)+(1+2+2^(2))+(1+2+2^(2)+2^(3))+ …. To n terms.

Find the sum (1^2)/(2)+(3^2)/(2^2)+(5^2)/(2^3)+(7^2)/(2^4)+….oo

Find the sum to n terms of the series: 3/(1^2 .2^2)+5/(2^2 .3^2)+7/(3^2 .4^2)+......