Home
Class 12
MATHS
Find the sum Sigma(j=1)^(n) Sigma(i=1)^...

Find the sum `Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j`

Text Solution

Verified by Experts

The correct Answer is:
`(3n(3^n-1)(n+1))/(4)`

`sum_(j=1)^(n)sum_(i=1)^(n)ixx3^(j)=(sum_(j=1)^(n)3^(j))(sum_(i=1)^(n)i)`
`=(3+3^(2)+3^(3)+….+3^(n))xx(1+2+3+..+n)`
`(3(3^(n)-1))/(3-1)xx(n(n+1))/2`
`=(3n(3^(n)-1)(n+1))/4`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.7|4 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of (Sigma_(r=1)^(n) 1/r)/(Sigma_(r=1)^(n) k/((2n-2k+1)(2n-k+1))) .

Find the sum sum_(j=1)^(10)sum_(i=1)^(10)ixx2^(j)

Find the sum Sigma_(n=1)^(oo)(3n^2+1)/((n^2-1)^3)

Find the sum Sigma_(r=1)^(n) r/((r+1)!) . Also, find the sum of infinite terms.

Find the sum Sigma_(r=1)^(n) 1/(r(r+1)(r+2)(r+3)) Also,find Sigma_(r=1)^(oo) 1/(r(r+1)(r+2)(r+3))

If Sigma_(i=1)^(10) x_i=60 and Sigma_(i=1)^(10)x_i^2=360 then Sigma_(i=1)^(10)x_i^3 is

Statement-1 :The weighted mean of first n natural numbers whose weights are equal is given by ((n+1)/2) . Statement-2 : If omega_1,omega_2,omega_3, … omega_n be the weights assigned to be n values x_1,x_2,… x_n respectively of a variable x, then weighted A.M. is equal to (Sigma_(i=1)^(n) omega_ix_i)/(Sigma_(i=1)^(n) omega_i)

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

The standard deviation (sigma) of variate x is the square root of the A.M. of the squares of all deviations of x from the A.M. observations. If x_i//f_i , i=1,2,… n is a frequency distribution then sigma=sqrt(1/N Sigma_(i=1)^(n) f_i(x_i-barx)^2), N=Sigma_(i=1)^(n) f_i and variance is the square of standard deviation. Coefficient of dispersion is sigma/x and coefficient of variation is sigma/x xx 100 The standard deviation for the set of numbers 1,4,5,7,8 is 2.45 then coefficient of dispersion is

"Evaluate Sigma_(n=1)^(11) (2+3^(n))