Home
Class 12
MATHS
Find the value of {:(" "SigmaSigma),(1 ...

Find the value of `{:(" "SigmaSigma),(1 le i le j):} " "i xx (1/2)^j`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of the double summation \(\sum_{1 \leq i \leq j} i \left(\frac{1}{2}\right)^j\), we can follow these steps: ### Step 1: Rewrite the Double Summation We start with the double summation: \[ S = \sum_{j=1}^{\infty} \sum_{i=1}^{j} i \left(\frac{1}{2}\right)^j \] This means we will first sum over \(i\) from 1 to \(j\), and then sum over \(j\). ### Step 2: Evaluate the Inner Summation The inner summation \(\sum_{i=1}^{j} i\) can be calculated using the formula for the sum of the first \(n\) natural numbers: \[ \sum_{i=1}^{j} i = \frac{j(j+1)}{2} \] Thus, we can rewrite \(S\) as: \[ S = \sum_{j=1}^{\infty} \frac{j(j+1)}{2} \left(\frac{1}{2}\right)^j \] ### Step 3: Factor Out the Constant We can factor out \(\frac{1}{2}\): \[ S = \frac{1}{2} \sum_{j=1}^{\infty} j(j+1) \left(\frac{1}{2}\right)^j \] ### Step 4: Simplify the Series We can express \(j(j+1)\) as \(j^2 + j\): \[ S = \frac{1}{2} \left( \sum_{j=1}^{\infty} j^2 \left(\frac{1}{2}\right)^j + \sum_{j=1}^{\infty} j \left(\frac{1}{2}\right)^j \right) \] ### Step 5: Evaluate Each Series 1. **For \(\sum_{j=1}^{\infty} j \left(\frac{1}{2}\right)^j\)**: This is a standard result: \[ \sum_{j=1}^{\infty} jx^j = \frac{x}{(1-x)^2} \quad \text{for } |x| < 1 \] Setting \(x = \frac{1}{2}\): \[ \sum_{j=1}^{\infty} j \left(\frac{1}{2}\right)^j = \frac{\frac{1}{2}}{\left(1 - \frac{1}{2}\right)^2} = \frac{\frac{1}{2}}{\left(\frac{1}{2}\right)^2} = 2 \] 2. **For \(\sum_{j=1}^{\infty} j^2 \left(\frac{1}{2}\right)^j\)**: Using the formula: \[ \sum_{j=1}^{\infty} j^2 x^j = \frac{x(1+x)}{(1-x)^3} \] Setting \(x = \frac{1}{2}\): \[ \sum_{j=1}^{\infty} j^2 \left(\frac{1}{2}\right)^j = \frac{\frac{1}{2}(1+\frac{1}{2})}{\left(1 - \frac{1}{2}\right)^3} = \frac{\frac{1}{2} \cdot \frac{3}{2}}{\left(\frac{1}{2}\right)^3} = \frac{\frac{3}{4}}{\frac{1}{8}} = 6 \] ### Step 6: Combine the Results Now we can combine the results: \[ S = \frac{1}{2} \left(6 + 2\right) = \frac{1}{2} \cdot 8 = 4 \] ### Final Answer Thus, the value of the double summation is: \[ \boxed{4} \]

To solve the problem of finding the value of the double summation \(\sum_{1 \leq i \leq j} i \left(\frac{1}{2}\right)^j\), we can follow these steps: ### Step 1: Rewrite the Double Summation We start with the double summation: \[ S = \sum_{j=1}^{\infty} \sum_{i=1}^{j} i \left(\frac{1}{2}\right)^j \] This means we will first sum over \(i\) from 1 to \(j\), and then sum over \(j\). ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.7|4 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n=C_(0)+C_(1)x+C_(2)x^2+….+C_(n)x^n then prove that (SigmaSigma)_(0 le i lt j le n ) C_(i)C_(j)^2=(n-1)^(2n)C_(n)+2^(2n)

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .

If nge3and1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are the n,nth roots of unity, then find value of (sumsum)_("1"le"i" lt "j" le "n" - "1" ) alpha _ "i" alpha _ "j"

Find the sum Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j

Find the value of sumsum_(0leilejlt=n)(i+j)(nC_i+n C_j)dot

What is the value of sum _(i+j = odd 1 le | lt | le 10) (i +j) - sum_(i + j = even 1 le | lt | le 10)(i+j) ?

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

Find the area of region : {(x,y) : 0 le y le x^(2) + 1, 0 le y le x + 1,0 le x le 2} .

Find the values of x which satisfy the inequation: -2le 1/2 - 2x le 1 5/6 , x epsilon N

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leilt j le n)jC_(i)