Home
Class 12
MATHS
If .^(n)C(8)=.^(n)C(6), then find .^(n)C...

If `.^(n)C_(8)=.^(n)C_(6)`, then find `.^(n)C_(2)`.

Text Solution

AI Generated Solution

To solve the problem where \( \binom{n}{8} = \binom{n}{6} \) and we need to find \( \binom{n}{2} \), we will follow these steps: ### Step 1: Write the equation using the formula for combinations The formula for combinations is given by: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Using this, we can express \( \binom{n}{8} \) and \( \binom{n}{6} \): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(n)C_(5) = .^(n)C_(7) , then find .^(n)P_(3)

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

If .^(n)C_(9)=.^(n)C_(7) , find n.

If .^(n)C_(10) = .^(n)C_(15) , then evaluate .^(27)C_(n) .

If .^(n)C_(r-1)=36, .^(n)C_(r)=84 and .^(n)C_(r+1)=126 , find n and r.

Find the following sums : (i) .^(n)C_(0)-.^(n)C_(2)+.^(n)C_(4)-.^(n)C_(6)+"....." (ii) .^(n)C_(1)-.^(n)C_(3)+.^(n)C_(5)-.^(n)C_(7)+"...." (iii) .^(n)C_(0)+.^(n)C_(4)+.^(n)C_(8)+.^(n)C_(12)+"....." (iv) .^(n)C_(2) + .^(n)C_(6) + .^(n)C_(10)+.^(n)C_(14)+"......" (v) .^(n)C_(1) + .^(n)C_(5)+.^(n)C_(9)+.^(n)C_(13)+"...." (vi) .^(n)C_(3) + .^(n)C_(7) + .^(n)C_(11) + .^(n)C_(15) + "....."

If .^(n)C_(4),.^(n)C_(5), .^(n)C_(6) are in A.P., then find the value of n.

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

If .^(n)C_(12) = .^(n)C_(16) , find the value of n

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .