Home
Class 12
MATHS
Find the value (s) of r satisfying the e...

Find the value (s) of `r` satisfying the equation `^69 C_(3r-1)-^(69)C_(r^2)=^(69)C_(r^2-1)-^(69)C_(3r)dot`

Text Solution

Verified by Experts

`.^(69)C_(3r-1)+ .^(69)C_(r^(2)-1)+ .^(69)C_(r^(2))`
`implies .^(70)C_(3r)= .^(70)C_(r^(2))`
`implies 3r=r^(2) " or" r=0,3`
or `3r+r^(2)-70=0`
or r=7, -10
Hence, possible values of r and 3 and 7 as for these values all the terms in equation are defined.
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of 'r' satisfying the equation ""^(39)C_(3r-1)- ""^(39)C_(r^(2) )= ""^(39)C_(r^(2)-1) - ""^(39)C_(3r) is

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

The number of values of r satisfying the equation 69 C 3r−1 ​ − 69 C r 2 ​ = 69 C r 2 −1 ​ − 69 C 3r ​ is:

Prove that .^(n)C_(r )+.^(n-1)C_(r )+..+.^(r )C_(r )=.^(n+1)C_(r+1)

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

the value of the determinant |{:(.^(n)C_(r-1),,.^(n)C_(r),,(r+1)^(n+2)C_(r+1)),(.^(n)C_(r),,.^(n)C_(r+1),,(r+2)^(n+2)C_(r+2)),(.^(n)C_(r+1),,.^(n)C_(r+2),,(r+3)^(n+2)C_(r+3)):}| is

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .