Home
Class 12
MATHS
In a plane, there are 5 straight lines w...

In a plane, there are 5 straight lines which will pass through a given point, 6 others which all pass through another given point, and 7 others which all as through a third given point. Supposing no three lines intersect at any point and no two are parallel, find the number of triangles formed by the intersection of the straight line.

Text Solution

Verified by Experts

Let 5 straight lines be passing through A, 6 passing through B, and 7 passing through C. In all, there are 18 straight lines.
To find the number of triangles, we have to find the number of selection of 3 lines from these 18 lines, keeping in mind that selection of 3 lines from the lines passing through A, B, or C will not give any triangle.
Hence, the required number of triangles is
`.^(18)C_(3)-(.^(5)C_(3)+ .^(6)C_(3) + .^(7)C_(3))=751`.
Promotional Banner

Similar Questions

Explore conceptually related problems

In a plane there are 37 straight lines, of which 13 passes through the point A and 11 passes through point B. Besides, no three lines passes through one point no line passes through both points A and B and no two are parallel, then find the number of points of intersection of the straight line.

How many lines can pass through (a) one given point (b) two given points

How many lines may pass through one given point, two given points, any three collinear points?

find the equation of the straight line which passes through the point (3,2) and whose gradient is 3.

How many lines can pass through (a) one given point? (b) two given points?

If there are nine straight lines of which five are concurrent at a point and the other four are concurrent at another point and no two of these nine lines are parallel, then the number of points of intersection is equal to

Find the gradient of a straight line which is passes through the point (-3. 6) and the mid point of (4,-5) and (-2, 9)

Find the equation of the straight line which passes through the point (4, 5) and is parallel to 3x+ 4y = 5

Find the equation of the straight line which makes equal intercepts on the axes and passes through the point (1,-3).

Find the equation of the straight line which makes equal intercepts on the axes and passes through the point (2,3).