Home
Class 12
MATHS
Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1...

Prove that: `((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot`

Text Solution

Verified by Experts

`((2n)!)/(n!)=(1xx2xx3xx4xx..xx(2n02)xx(2n-1)2n)/(n!)`
`=({1xx3xx..xx(2n-1)}{2xx4xx..xx(2n)})/(n!)`
`=({1xx3xx..xx(2n-1)}2^(n){1xx2xx..xx(n-1)n})/(n!)`
`=({1xx3xx5xx7xx..xx(2n-1)}2^(n)n!)/(n!)`
`={1xx3xx5xx7xx..xx(2n-1)}2^(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

Prove that: \ ^(2n)C_n=(2^n[1. 3. 5 (2n-1)])/(n !)

Prove that : 1+2+3++n=(n(n+1))/2

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that: (1+1/1)(1+1/2)(1+1/3)(1+1/n)=(n+1) for all n in Ndot

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Using mathematical induction, prove that (1)/(1.3.5) + (2)/(3.5.7) +….+(n)/((2n-1)( 2n+1) ( 2n+3)) =( n(n+1))/( 2(2n+1) (2n+3))

Prove that (1)/(1!(n-1)!) + (1)/(3!(n-3)!)+ (1)/(5!(n-5)!) + …….= (2^(n-1))/(n!)

Prove that log_e ((n^2)/(n^2-1))=1/(n^2)+1/(2n^4)+1/(3n^6)+........oo

If n ge 1 is a positive integer, then prove that 3^(n) ge 2^(n) + n . 6^((n - 1)/(2))