Home
Class 12
MATHS
If .^(n)P(5)=20 .^(n)P(3), find the valu...

If `.^(n)P_(5)=20 .^(n)P_(3)`, find the value of n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( nP_5 = 20 \cdot nP_3 \), we will follow these steps: ### Step 1: Write the formula for permutations The permutation formula is given by: \[ nP_r = \frac{n!}{(n-r)!} \] Using this, we can express \( nP_5 \) and \( nP_3 \). ### Step 2: Substitute the permutation values Substituting into the equation: \[ nP_5 = \frac{n!}{(n-5)!} \] \[ nP_3 = \frac{n!}{(n-3)!} \] Thus, the equation becomes: \[ \frac{n!}{(n-5)!} = 20 \cdot \frac{n!}{(n-3)!} \] ### Step 3: Simplify the equation We can cancel \( n! \) from both sides (assuming \( n! \neq 0 \)): \[ \frac{1}{(n-5)!} = 20 \cdot \frac{1}{(n-3)!} \] This simplifies to: \[ (n-3)! = 20 \cdot (n-5)! \] ### Step 4: Express \( (n-3)! \) in terms of \( (n-5)! \) We can express \( (n-3)! \) as: \[ (n-3)! = (n-3)(n-4)(n-5)! \] Substituting this into the equation gives: \[ (n-3)(n-4)(n-5)! = 20 \cdot (n-5)! \] ### Step 5: Cancel \( (n-5)! \) Assuming \( (n-5)! \neq 0 \), we can cancel \( (n-5)! \) from both sides: \[ (n-3)(n-4) = 20 \] ### Step 6: Expand and rearrange the equation Expanding the left side: \[ n^2 - 7n + 12 = 20 \] Rearranging gives: \[ n^2 - 7n - 8 = 0 \] ### Step 7: Factor the quadratic equation We can factor the quadratic equation: \[ (n - 8)(n + 1) = 0 \] ### Step 8: Solve for \( n \) Setting each factor to zero gives: \[ n - 8 = 0 \quad \Rightarrow \quad n = 8 \] \[ n + 1 = 0 \quad \Rightarrow \quad n = -1 \] Since \( n \) must be a non-negative integer, we discard \( n = -1 \). ### Conclusion Thus, the value of \( n \) is: \[ \boxed{8} \]

To solve the equation \( nP_5 = 20 \cdot nP_3 \), we will follow these steps: ### Step 1: Write the formula for permutations The permutation formula is given by: \[ nP_r = \frac{n!}{(n-r)!} \] Using this, we can express \( nP_5 \) and \( nP_3 \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

find the value of P(n,n-1)

If .^(n)P_(4): .^(n)P_(5) = 1:2 , find the value of n.

If .^(m+n)P_(2)=90 and .^(m-n)P_(2)=30 , find the value of m and .

If nP5=20nP3 find the value of n

If .^(n)P_(3)+.^(n)C_(n-2)=14n , the value of n is (a) 5 (b) 6 (c) 8 (d) 10

If \ ^n P_4=360 ,\ find the value of ndot

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .

If .^(n)C_(4),.^(n)C_(5), .^(n)C_(6) are in A.P., then find the value of n.

If .^(n)P_(r)=720 and .^(n)C_(r)=120 then find the value of r.

If P(n ,4)=20xxP(n ,2), then find the value of n