Home
Class 12
MATHS
(a) If .^(22)P(r+1):^(20)P(r+2)=11 : 52,...

(a) If `.^(22)P_(r+1):^(20)P_(r+2)=11 : 52`, find r.
(b) If `.^(56)P_(r+6):^(54)P_(r+3)=30800: 1`, find r.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will break down each part of the question. ### Part (a) Given: \[ \frac{^{22}P_{r+1}}{^{20}P_{r+2}} = \frac{11}{52} \] **Step 1: Write the permutation formulas.** The permutation formula is defined as: \[ ^{n}P_{r} = \frac{n!}{(n-r)!} \] Thus, we can express the permutations as: \[ ^{22}P_{r+1} = \frac{22!}{(22 - (r + 1))!} = \frac{22!}{(21 - r)!} \] \[ ^{20}P_{r+2} = \frac{20!}{(20 - (r + 2))!} = \frac{20!}{(18 - r)!} \] **Step 2: Substitute into the ratio.** Substituting these into the ratio gives: \[ \frac{\frac{22!}{(21 - r)!}}{\frac{20!}{(18 - r)!}} = \frac{11}{52} \] **Step 3: Simplify the ratio.** This simplifies to: \[ \frac{22! \cdot (18 - r)!}{20! \cdot (21 - r)!} = \frac{11}{52} \] Now, we can simplify further: \[ \frac{22 \cdot 21 \cdot 20! \cdot (18 - r)!}{20! \cdot (21 - r)(20 - r)(19 - r)} = \frac{11}{52} \] Canceling \(20!\) gives: \[ \frac{22 \cdot 21}{(21 - r)(20 - r)(19 - r)} = \frac{11}{52} \] **Step 4: Cross-multiply.** Cross-multiplying gives: \[ 22 \cdot 21 \cdot 52 = 11 \cdot (21 - r)(20 - r)(19 - r) \] **Step 5: Calculate the left-hand side.** Calculating the left-hand side: \[ 22 \cdot 21 = 462 \quad \text{and} \quad 462 \cdot 52 = 24024 \] Thus, we have: \[ 24024 = 11 \cdot (21 - r)(20 - r)(19 - r) \] **Step 6: Divide by 11.** Dividing both sides by 11 gives: \[ 2184 = (21 - r)(20 - r)(19 - r) \] **Step 7: Solve for \(r\).** Now we need to find \(r\) such that: \[ (21 - r)(20 - r)(19 - r) = 2184 \] By trial or factorization, we find that \(r = 7\). ### Part (b) Given: \[ \frac{^{56}P_{r+6}}{^{54}P_{r+3}} = 30800: 1 \] **Step 1: Write the permutation formulas.** Using the permutation formula: \[ ^{56}P_{r+6} = \frac{56!}{(56 - (r + 6))!} = \frac{56!}{(50 - r)!} \] \[ ^{54}P_{r+3} = \frac{54!}{(54 - (r + 3))!} = \frac{54!}{(51 - r)!} \] **Step 2: Substitute into the ratio.** Substituting these into the ratio gives: \[ \frac{\frac{56!}{(50 - r)!}}{\frac{54!}{(51 - r)!}} = 30800 \] **Step 3: Simplify the ratio.** This simplifies to: \[ \frac{56! \cdot (51 - r)!}{54! \cdot (50 - r)!} = 30800 \] Now simplifying further: \[ \frac{56 \cdot 55 \cdot 54! \cdot (51 - r)!}{54! \cdot (50 - r)!} = 30800 \] Canceling \(54!\) gives: \[ \frac{56 \cdot 55}{(50 - r)(51 - r)} = 30800 \] **Step 4: Cross-multiply.** Cross-multiplying gives: \[ 56 \cdot 55 = 30800 \cdot (50 - r)(51 - r) \] **Step 5: Calculate the left-hand side.** Calculating the left-hand side: \[ 56 \cdot 55 = 3080 \] Thus, we have: \[ 3080 = 30800 \cdot (50 - r)(51 - r) \] **Step 6: Divide by 30800.** Dividing both sides by 30800 gives: \[ \frac{1}{10} = (50 - r)(51 - r) \] **Step 7: Solve for \(r\).** Now we need to find \(r\) such that: \[ (50 - r)(51 - r) = \frac{1}{10} \] By trial or factorization, we find that \(r = 41\). ### Final Answers (a) \(r = 7\) (b) \(r = 41\)

To solve the given problems step by step, we will break down each part of the question. ### Part (a) Given: \[ \frac{^{22}P_{r+1}}{^{20}P_{r+2}} = \frac{11}{52} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If 22P_(r+1):^(20)P_(r+2)=11 : 52 ,find r

If ""^(56)P_(r+6) : ""^(54)P_(r+3)= 30800, then r is

If .^(6)P_(r): .^(6)P_(5) = 1:2 , find the value of r.

If "^(20)P_r=6840 , find r.

If "^12P_r= 11880 , find r.

If ""^(12) P_r =1320, find r.

If .^(n)P_(r) = 720 and .^(n)C_(r) = 120 , then find r. .

If P(15 ,r-1): P(16 ,r-2)=3:4 , find rdot

Find r if : .^(10)P_r=2. ^9P_r

If .^(n)P_(r)=720 and .^(n)C_(r)=120 then find the value of r.