Home
Class 12
MATHS
If |(a^2,b^2,c^2),((a+1)^2 ,(b+1)^2,(c+1...

If `|(a^2,b^2,c^2),((a+1)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a)` then the value of k is a. 4 b. -2 c.-4 d. 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the following matrix: \[ D = \begin{vmatrix} a^2 & b^2 & c^2 \\ (a+1)^2 & (b+1)^2 & (c+1)^2 \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix} \] We are given that this determinant equals \( k(a-b)(b-c)(c-a) \) and we need to find the value of \( k \). ### Step 1: Write the matrix The matrix is: \[ D = \begin{vmatrix} a^2 & b^2 & c^2 \\ (a+1)^2 & (b+1)^2 & (c+1)^2 \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix} \] ### Step 2: Apply row transformations We will perform a row operation to simplify the determinant. Specifically, we will subtract the third row from the second row: \[ R_2 \rightarrow R_2 - R_3 \] This gives us: \[ D = \begin{vmatrix} a^2 & b^2 & c^2 \\ (a+1)^2 - (a-1)^2 & (b+1)^2 - (b-1)^2 & (c+1)^2 - (c-1)^2 \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix} \] Calculating the elements of the new second row: \[ (a+1)^2 - (a-1)^2 = 4a, \quad (b+1)^2 - (b-1)^2 = 4b, \quad (c+1)^2 - (c-1)^2 = 4c \] Thus, we have: \[ D = \begin{vmatrix} a^2 & b^2 & c^2 \\ 4a & 4b & 4c \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix} \] ### Step 3: Factor out constants We can factor out 4 from the second row: \[ D = 4 \begin{vmatrix} a^2 & b^2 & c^2 \\ a & b & c \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix} \] ### Step 4: Apply another row transformation Now, we will perform another row operation on the third row: \[ R_3 \rightarrow R_3 - R_1 \] This gives us: \[ D = 4 \begin{vmatrix} a^2 & b^2 & c^2 \\ a & b & c \\ (a-1)^2 - a^2 & (b-1)^2 - b^2 & (c-1)^2 - c^2 \end{vmatrix} \] Calculating the elements of the new third row: \[ (a-1)^2 - a^2 = -2a + 1, \quad (b-1)^2 - b^2 = -2b + 1, \quad (c-1)^2 - c^2 = -2c + 1 \] Thus, we have: \[ D = 4 \begin{vmatrix} a^2 & b^2 & c^2 \\ a & b & c \\ -2a + 1 & -2b + 1 & -2c + 1 \end{vmatrix} \] ### Step 5: Evaluate the determinant Now we can evaluate the determinant. The determinant of this matrix can be computed using the formula for determinants of 3x3 matrices. After evaluating, we find that: \[ D = -4(a-b)(b-c)(c-a) \] ### Step 6: Compare with the given expression We have: \[ D = k(a-b)(b-c)(c-a) \] Comparing both sides, we find: \[ k = -4 \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{-4} \]

To solve the problem, we need to evaluate the determinant of the following matrix: \[ D = \begin{vmatrix} a^2 & b^2 & c^2 \\ (a+1)^2 & (b+1)^2 & (c+1)^2 \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|= then

Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-c)(c-a)

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0 then k is equal to :

If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0 then k is equal to : (A) 4 lambda abc (B) -4 lambda abc (C) 4 lambda^2 (D) -4 lambda^2

If a+b+c=0a n da^2+b^2+c^2=1, then the value of a^4+b^4+c^4 is 1 b. 4 c. 1/2 d. 1/4

Prove: |(a^2+1,a b ,a c), (a b,b^2+1,b c), (c a,cb,c^2+1)|=1+a^2+b^2+c^2

If (1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c) , then

Value of |(1,a,a^2),(1,b,b^2),(1,c,c^2)| is (A) (a-b)(b-c)(c-a) (B) (a^2-b^2)(b^2-c^2)(c^2-a^2) (C) (a-b+c)(b-c+a)(c+a-b) (D) none of these

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. If |(a^2,b^2,c^2),((a+1)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |