Home
Class 12
MATHS
Evaluate |{:(.^(x)C(1),,.^(x)C(2),,.^(x)...

Evaluate `|{:(.^(x)C_(1),,.^(x)C_(2),,.^(x)C_(3)),(.^(y)C_(1),,.^(y)C_(2),,.^(y)C_(3)),(.^(x)C_(1),,.^(z)C_(2),,.^(z)C_(3)):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \[ D = \begin{vmatrix} {x \choose 1} & {x \choose 2} & {x \choose 3} \\ {y \choose 1} & {y \choose 2} & {y \choose 3} \\ {z \choose 1} & {z \choose 2} & {z \choose 3} \end{vmatrix} \] we will follow these steps: ### Step 1: Write the Binomial Coefficients First, we will express the binomial coefficients in terms of \(x\), \(y\), and \(z\): \[ {x \choose 1} = x, \quad {x \choose 2} = \frac{x(x-1)}{2}, \quad {x \choose 3} = \frac{x(x-1)(x-2)}{6} \] Similarly, for \(y\) and \(z\): \[ {y \choose 1} = y, \quad {y \choose 2} = \frac{y(y-1)}{2}, \quad {y \choose 3} = \frac{y(y-1)(y-2)}{6} \] \[ {z \choose 1} = z, \quad {z \choose 2} = \frac{z(z-1)}{2}, \quad {z \choose 3} = \frac{z(z-1)(z-2)}{6} \] Thus, we can rewrite the determinant as: \[ D = \begin{vmatrix} x & \frac{x(x-1)}{2} & \frac{x(x-1)(x-2)}{6} \\ y & \frac{y(y-1)}{2} & \frac{y(y-1)(y-2)}{6} \\ z & \frac{z(z-1)}{2} & \frac{z(z-1)(z-2)}{6} \end{vmatrix} \] ### Step 2: Factor Out Common Terms Next, we can factor out common terms from each row: - From the first row, factor out \(x\). - From the second row, factor out \(\frac{y}{2}\). - From the third row, factor out \(\frac{z}{6}\). This gives us: \[ D = x \cdot \frac{y}{2} \cdot \frac{z}{6} \cdot \begin{vmatrix} 1 & (x-1) & \frac{(x-1)(x-2)}{3} \\ 1 & (y-1) & \frac{(y-1)(y-2)}{3} \\ 1 & (z-1) & \frac{(z-1)(z-2)}{3} \end{vmatrix} \] ### Step 3: Simplify the Determinant Now, we can simplify the determinant: \[ D = \frac{xyz}{12} \cdot \begin{vmatrix} 1 & (x-1) & \frac{(x-1)(x-2)}{3} \\ 1 & (y-1) & \frac{(y-1)(y-2)}{3} \\ 1 & (z-1) & \frac{(z-1)(z-2)}{3} \end{vmatrix} \] ### Step 4: Perform Column Operations Next, we can perform column operations to simplify the determinant further. We can replace the third column with the third column minus the second column multiplied by \(\frac{(x-1)}{3}\): \[ D = \frac{xyz}{12} \cdot \begin{vmatrix} 1 & (x-1) & 0 \\ 1 & (y-1) & 0 \\ 1 & (z-1) & 0 \end{vmatrix} \] ### Step 5: Calculate the Determinant The determinant of a matrix with two identical columns is zero. Therefore, we can conclude that: \[ D = 0 \] ### Final Answer Thus, the value of the determinant is: \[ D = 0 \]

To evaluate the determinant \[ D = \begin{vmatrix} {x \choose 1} & {x \choose 2} & {x \choose 3} \\ {y \choose 1} & {y \choose 2} & {y \choose 3} \\ {z \choose 1} & {z \choose 2} & {z \choose 3} \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z)C_(r+2)):}| is equal to

if x,y and z are not all zero and connected by the equations a_(1)x+b_(1)y+c_(1)z=0,a_(z)x+b_(2)y+c_(2)z=0 and (p_(1)+lambdaq_(1))x+(p_(2)+lambdaq_(2))y+(p_(3)+lambdaq_(3))z=0 show that lambda =-|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(p_(1) ,, p_(2),,p_(3)):}|-:|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(q_(1) ,, q_(2),,q_(3)):}|

Show that |[""^xC_r, ""^x C_(r+1),""^x C_(r+2)],[""^y C_r,""^y C_(r+1),""^y C_(r+2)],[""^z C_r,""^z C_(r+1),""^z C_(r+2)]|=|[""^(x)C_r, ""^(x+1) C_(r+1),""^(x+2) C_(r+2)],[""^y C_r,""^(y+1) C_(r+1),""^(y+2) C_(r+2)],[""^z C_r,""^(z+1) C_(r+1),""^(z+2) C_(r+2)]|

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

Show that |^x C_r^x C_(r+1)^x C_(r+2)^y C_r^y C_(r+1)^y C_(r+2)^z C_r^z C_(r+1)^z C_(r+1)|=|^x C_r^(x+1)C_(r+1)^(x+2)C_(r+2)^y C_r^(y+1)C_(r+1)^(y+2)C_(r+2)^z C_r^(z+1)C_(r+1)^(z+2)C_(r+1)| .

Let a=xhati+12hatj-hatk,b=2hati+2xhatj+hatk and c=hati+hatk . If b,c,a in that order form a left handed system, then find the value of x. [x_(1)a+y_(1)b+z_(1)c,x_(2)a+y_(2)b+z_(2)c,x_(3)a+y_(3)b+z_(3)c] =|(x_(1),y_(1),z_(1)),(x_(2),y_(2),z_(2)),(x_(3),y_(3),z_(3))|[abc] .

If x, y and r are positive integers, then ""^(x)C_(r)+""^(x)C_(r-1)+""^(y)C_(1)+""^(x)C_(r-2)""^(y)C_(2)+......+""^(y)C_(r)=

If n gt 3 , then xyz^(n)C_(0)-(x-1)(y-1)(z-1)""^(n)C_(1)+(x-2)(y-2)(z-2)""^(n)C_(2)- (x-3)(y-3)(z-3)""^(n)C_(3)+…..+(-1)^(n)(x-n)(y-n)(z-n)""^(n)C_(n) equals :

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

If (1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+C_(3).x^(3)+......+C_(n).x^(n), then prove that C_(0)+2C_(1)+4C_(2)+6C_(3)+...+2n.C_(n)=1+n*2^(n)

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Evaluate |{:(.^(x)C(1),,.^(x)C(2),,.^(x)C(3)),(.^(y)C(1),,.^(y)C(2),,....

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |