Home
Class 12
MATHS
If p + q + r = a + b + c = 0, then the d...

If p + q + r = a + b + c = 0, then the determinant `|{:(pa,qb,rc),(qc,ra,pb),(rb,pc,qa):}|` equals

A

0

B

`pa+qb+rc`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix} \) given that \( p + q + r = 0 \) and \( a + b + c = 0 \), we can follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix} \] ### Step 2: Expand the Determinant We can expand the determinant along the first row (R1): \[ D = pa \begin{vmatrix} ra & pb \\ pc & qa \end{vmatrix} - qb \begin{vmatrix} qc & pb \\ rb & qa \end{vmatrix} + rc \begin{vmatrix} qc & ra \\ rb & pc \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants Calculating the first 2x2 determinant: \[ \begin{vmatrix} ra & pb \\ pc & qa \end{vmatrix} = ra \cdot qa - pb \cdot pc = r a q a - p b c \] Calculating the second 2x2 determinant: \[ \begin{vmatrix} qc & pb \\ rb & qa \end{vmatrix} = qc \cdot qa - pb \cdot rb = q c q a - p b r b \] Calculating the third 2x2 determinant: \[ \begin{vmatrix} qc & ra \\ rb & pc \end{vmatrix} = qc \cdot pc - ra \cdot rb = q c p c - r a r b \] ### Step 4: Substitute Back into the Determinant Substituting these back into the determinant: \[ D = pa (r a q a - p b c) - qb (q c q a - p b r b) + rc (q c p c - r a r b) \] ### Step 5: Simplify the Expression Now we simplify each term: 1. The first term becomes: \[ pa (r a q a - p b c) = p a r a q a - p^2 a b c \] 2. The second term becomes: \[ -qb (q c q a - p b r b) = -q^2 b c q a + p q b^2 r \] 3. The third term becomes: \[ rc (q c p c - r a r b) = r c q c p c - r^2 c a r b \] ### Step 6: Combine Like Terms Combining all these terms: \[ D = p a r a q a - p^2 a b c - q^2 b c q a + p q b^2 r + r c q c p c - r^2 c a r b \] ### Step 7: Factor Out Common Terms Notice that we can factor out \( pqr \) and \( abc \) from the expression: \[ D = pqr (a^3 + b^3 + c^3) - abc (p^3 + q^3 + r^3) \] ### Step 8: Use the Given Conditions Using the identities given in the problem: Since \( a + b + c = 0 \) and \( p + q + r = 0 \), we can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) = 0 \] Thus, \( a^3 + b^3 + c^3 = 3abc \) and similarly \( p^3 + q^3 + r^3 = 3pqr \). ### Final Result Substituting these back gives: \[ D = pqr(3abc) - abc(3pqr) = 0 \] Thus, the value of the determinant is: \[ \boxed{0} \]

To solve the determinant \( D = \begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix} \) given that \( p + q + r = 0 \) and \( a + b + c = 0 \), we can follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If p+q+r=0=a+b+c , then the value of the determinant |[p a, q b, r c],[ q c ,r a, p b],[ r b, p c, q a]|i s (a) 0 (b) p a+q b+r c (c) 1 (d) none of these

If p+q+r=0 and |(pa,qb,rc),(qc,ra,pb),(rb,pc,qa)| = lambda |(a,b,c),(c,a,b),(b,c,a)| then lambda =

If a gt 0, b gt 0, c gt0 are respectively the pth, qth, rth terms of a G.P., then the value of the determinant |(log a,p,1),(log b,q,1),(log c,r,1)| , is

Without expanding the determinant prove that: |(0, p-q, p-r), (q-p,0, q-r),(r-p, r-q, 0)|=0

If pth, qth, and rth terms of an A.P. are a ,b ,c , respectively, then show that (1) a(q-r)+b(r-p)+c(p-q)=0 (2)(a-b)r+(b-c)p+(c-a)q=0

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

If pth,qth and rth terms of an A.P. are a, b, c respectively, then show that (i) a(q-r)+b(r-p)+c(p-q)=0

The sum of the first p , q , r terms of an A.P. are a , b , c respectively. Show that a/p(q-r)+b/q(r-p)+c/r(p-q)=0

The sum of the first p , q , r terms of an A.P. are a , b , c respectively. Show that a/p(q-r)+b/q(r-p)+c/r(p-q)=0

The sum of the first p , q , r terms of an A.P. are a , b , c respectively. Show that a/p(q-r)+b/q(r-p)+c/r(p-q)=0

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. If p + q + r = a + b + c = 0, then the determinant |{:(pa,qb,rc),(qc,r...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |