Home
Class 12
MATHS
if the value of the determinant |{:(a,...

if the value of the determinant `|{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}|` is positivie then
`(a,b,c lt 0)`

A

`abc gt 1`

B

` abc gt -8`

C

` abc gt -8`

D

`abc gt -2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant problem, we will follow these steps: ### Step 1: Write down the determinant We are given the determinant: \[ D = \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} \] ### Step 2: Calculate the determinant Using the formula for the determinant of a 3x3 matrix, we have: \[ D = a \begin{vmatrix} b & 1 \\ 1 & c \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & c \end{vmatrix} + 1 \begin{vmatrix} 1 & b \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} b & 1 \\ 1 & c \end{vmatrix} = bc - 1\) 2. \(\begin{vmatrix} 1 & 1 \\ 1 & c \end{vmatrix} = c - 1\) 3. \(\begin{vmatrix} 1 & b \\ 1 & 1 \end{vmatrix} = 1 - b\) Substituting these back into the determinant: \[ D = a(bc - 1) - (c - 1) + (1 - b) \] \[ D = abc - a - c + 1 + 1 - b \] \[ D = abc - a - b - c + 2 \] ### Step 3: Set the determinant greater than zero We know from the problem statement that: \[ abc - a - b - c + 2 > 0 \] Rearranging gives: \[ abc + 2 > a + b + c \] ### Step 4: Apply the AM-GM inequality Using the Arithmetic Mean-Geometric Mean (AM-GM) inequality, we have: \[ \frac{a + b + c}{3} \geq \sqrt[3]{abc} \] This implies: \[ a + b + c \geq 3\sqrt[3]{abc} \] ### Step 5: Substitute back into the inequality Substituting this into our earlier inequality: \[ abc + 2 > 3\sqrt[3]{abc} \] Let \(x = \sqrt[3]{abc}\), then we can rewrite the inequality: \[ x^3 + 2 > 3x \] Rearranging gives: \[ x^3 - 3x + 2 > 0 \] ### Step 6: Factor the cubic polynomial Factoring \(x^3 - 3x + 2\): \[ (x - 1)^2(x + 2) > 0 \] ### Step 7: Analyze the factors The expression \((x - 1)^2(x + 2) > 0\) is positive when: 1. \(x - 1 = 0\) gives \(x = 1\) (double root, does not change sign) 2. \(x + 2 = 0\) gives \(x = -2\) The critical points are \(x = -2\) and \(x = 1\). The expression is positive for: - \(x < -2\) (not possible since \(x = \sqrt[3]{abc}\) must be real) - \(-2 < x < 1\) (valid) - \(x > 1\) (valid) ### Step 8: Conclusion Since \(x = \sqrt[3]{abc}\), we have: \[ \sqrt[3]{abc} > -2 \Rightarrow abc > (-2)^3 = -8 \] Thus, the final answer is: \[ abc > -8 \]

To solve the determinant problem, we will follow these steps: ### Step 1: Write down the determinant We are given the determinant: \[ D = \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If the value of the determinant |(a,1, 1) (1,b,1) (1,1,c)| is positive then a. a b c >1 b. a b c> -8 c. a b c -2

The value of the determinant |{:(1,0,-1),(a,1,1-a),(b,a,1+a-b):}| depends on :

Write the value of the determinant |[a,1,b+c], [b,1,c+a] ,[c,1,a+b]| .

If a,b,c and d are the roots of the equation x^(4)+2x^(3)+4x^(2)+8x+16=0 the value of the determinant |{:(1+a,1,1,1),(1,1+b,1,1),(1,1,1+c,1),(1,1,1,1+d):}| is

The value of the determinant |{:(1,bc,a(b+c)),(1,ca,b(a+c)),(1, ab,c(a+b)):}| doesn't depend on

The value of the determinant |(1+a, 1, 1),(1, 1+a, 1),(1, 1, 1+a)| is zero if (A) a=-3 (B) a=0 (C) a=2 (D) a=1

If C = 2 cos theta , then the value of the determinant Delta = |(C,1,0),(1,C,1),(6,1,c)| , is

Prove that : |{:(a+b,b+c,c+a),(c,a,b),(1,1,1):}|

The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

The value of Delta = |(1,a,b +c),(1,b,c +a),(1,c,a +b)| , is

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. if the value of the determinant |{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}| ...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |