Home
Class 12
MATHS
If a ,b ,c ,d ,e ,a n df are in G.P. the...

If `a ,b ,c ,d ,e ,a n df` are in G.P. then the value of `|a^2d^2x b^2e^2y c^2f^2z|` depends on `xa n dy` b. `xa n dz` c. `ya n dz` d. independent of `x ,y ,a n dz`

A

x and y

B

x and z

C

y and z

D

independent of x,y and z

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the determinant given the conditions that \(a, b, c, d, e, f\) are in a geometric progression (G.P.). ### Step-by-step Solution: 1. **Understanding the G.P. Condition**: Since \(a, b, c, d, e, f\) are in G.P., we can express them in terms of a common ratio \(r\): - \(b = ar\) - \(c = ar^2\) - \(d = ar^3\) - \(e = ar^4\) - \(f = ar^5\) 2. **Setting up the Determinant**: We need to evaluate the determinant: \[ \begin{vmatrix} a^2 & b^2 & c^2 \\ d^2 & e^2 & f^2 \\ x & y & z \end{vmatrix} \] Substituting the values of \(b, c, d, e, f\) in terms of \(a\) and \(r\): \[ \begin{vmatrix} a^2 & (ar)^2 & (ar^2)^2 \\ (ar^3)^2 & (ar^4)^2 & (ar^5)^2 \\ x & y & z \end{vmatrix} = \begin{vmatrix} a^2 & a^2r^2 & a^2r^4 \\ a^2r^6 & a^2r^8 & a^2r^{10} \\ x & y & z \end{vmatrix} \] 3. **Factoring Out Common Terms**: We can factor \(a^2\) from the first two rows: \[ a^2 \cdot a^2 \cdot \begin{vmatrix} 1 & r^2 & r^4 \\ r^6 & r^8 & r^{10} \\ x & y & z \end{vmatrix} = a^4 \cdot \begin{vmatrix} 1 & r^2 & r^4 \\ r^6 & r^8 & r^{10} \\ x & y & z \end{vmatrix} \] 4. **Evaluating the Determinant**: Now, we need to evaluate the determinant: \[ \begin{vmatrix} 1 & r^2 & r^4 \\ r^6 & r^8 & r^{10} \\ x & y & z \end{vmatrix} \] We can perform row operations or use properties of determinants to simplify this. Notice that the first two rows are linearly dependent (the second row is a multiple of the first), which implies that the determinant is equal to zero: \[ = 0 \] 5. **Conclusion**: Since the determinant evaluates to zero, it indicates that the rows are linearly dependent, meaning that the value of the determinant does not depend on \(x\), \(y\), or \(z\). Therefore, the correct answer is: **d. independent of \(x\), \(y\), and \(z\)**.

To solve the problem, we need to analyze the determinant given the conditions that \(a, b, c, d, e, f\) are in a geometric progression (G.P.). ### Step-by-step Solution: 1. **Understanding the G.P. Condition**: Since \(a, b, c, d, e, f\) are in G.P., we can express them in terms of a common ratio \(r\): - \(b = ar\) - \(c = ar^2\) ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If a ,b ,c ,d ,e , and f are in G.P. then the value of |((a^2),(d^2),x),((b^2),(e^2),y),((c^2),(f^2),z)| depends on (A) x and y (B) x and z (C) y and z (D) independent of x ,y ,and z

If a ,b ,c,d are in G.P. prove that (a^n+b^n),(b^n+c^n),(c^n+d^n) are in G.P.

If a ,b ,c,d are in G.P. prove that (a^n+b^n),(b^n+c^n),(c^n+d^n) are in G.P.

If x ,1,a n dz are in A.P. and x ,2,a n dz are in G.P., then prove that x ,a n d4,z are in H.P.

If x ,1,a n dz are in A.P. and x ,2,a n dz are in G.P., then prove that x ,a n d4,z are in H.P.

If a ,b ,a n dc are in G.P., then the equations a x^2+2b x+c=0a n ddx^2+2e x+f=0 have a common root if d/c , e/b ,f/c are in a. A.P. b. G.P. c. H.P. d. none of these

In Figure, A B C D is a parallelogram. Find the values of xa n dydot

If p ,q ,r are in A.P. then value of determinant |[a^2+2^(n+1)+2p, b^2+2^(n+2)+3q, c^2+p], [2^n+p, 2^(n+1), 2q], [a^2+2^n+p, b^2+2^(n+1), c^2-r]| is (a) 0 (b) Independent from a , b , c (c) a^2b^2c^2-2^n (d) Independent from n

If a ,b , a n dc are in G.P. and x ,y , respectively, are the arithmetic means between a ,b ,a n db ,c , then the value of a/x+c/y is 1 b. 2 c. 1//2 d. none of these

If a ,b , a n dc are in G.P. and x ,y , respectively, are the arithmetic means between a ,b ,a n db ,c , then the value of a/x+c/y is 1 b. 2 c. 1//2 d. none of these

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. If a ,b ,c ,d ,e ,a n df are in G.P. then the value of |a^2d^2x b^2e^...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |