Home
Class 12
MATHS
The value of |{:(-1,,2,,1),(3+2sqrt(2),...

The value of `|{:(-1,,2,,1),(3+2sqrt(2),,2+2sqrt(2),,1),(3-2sqrt(2),,2-2sqrt(2),,1):}|` is equal to

A

`0`

B

`-16sqrt(2)`

C

`-8sqrt(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( | \begin{pmatrix} -1 & 2 & 1 \\ 3 + 2\sqrt{2} & 2 + 2\sqrt{2} & 1 \\ 3 - 2\sqrt{2} & 2 - 2\sqrt{2} & 1 \end{pmatrix} | \), we will follow these steps: ### Step 1: Write the Determinant We start by writing the determinant as follows: \[ D = \begin{vmatrix} -1 & 2 & 1 \\ 3 + 2\sqrt{2} & 2 + 2\sqrt{2} & 1 \\ 3 - 2\sqrt{2} & 2 - 2\sqrt{2} & 1 \end{vmatrix} \] ### Step 2: Apply Row Transformations We will perform row transformations to simplify the determinant. Specifically, we will perform the following operations: - \( R_1 \rightarrow R_1 - R_2 \) - \( R_2 \rightarrow R_2 - R_3 \) After performing these operations, we will have: \[ D = \begin{vmatrix} -4 - 2\sqrt{2} & 0 & 0 \\ 0 & 4\sqrt{2} & 0 \\ 3 - 2\sqrt{2} & 2 - 2\sqrt{2} & 1 \end{vmatrix} \] ### Step 3: Expand the Determinant Next, we will expand the determinant along the third column: \[ D = 0 - 0 + 1 \cdot \begin{vmatrix} -4 - 2\sqrt{2} & 0 \\ 3 - 2\sqrt{2} & 2 - 2\sqrt{2} \end{vmatrix} \] ### Step 4: Calculate the 2x2 Determinant Now we need to calculate the determinant of the 2x2 matrix: \[ \begin{vmatrix} -4 - 2\sqrt{2} & 0 \\ 3 - 2\sqrt{2} & 2 - 2\sqrt{2} \end{vmatrix} = (-4 - 2\sqrt{2})(2 - 2\sqrt{2}) - (0)(3 - 2\sqrt{2}) \] This simplifies to: \[ = (-4 - 2\sqrt{2})(2 - 2\sqrt{2}) = -8 + 8\sqrt{2} - 4\sqrt{2} + 4 = -4 + 4\sqrt{2} \] ### Step 5: Substitute Back into the Determinant Now substituting back, we have: \[ D = 1 \cdot (-4 + 4\sqrt{2}) = -4 + 4\sqrt{2} \] ### Final Answer Thus, the value of the determinant is: \[ D = -4 + 4\sqrt{2} \]

To find the value of the determinant \( | \begin{pmatrix} -1 & 2 & 1 \\ 3 + 2\sqrt{2} & 2 + 2\sqrt{2} & 1 \\ 3 - 2\sqrt{2} & 2 - 2\sqrt{2} & 1 \end{pmatrix} | \), we will follow these steps: ### Step 1: Write the Determinant We start by writing the determinant as follows: \[ D = \begin{vmatrix} -1 & 2 & 1 \\ 3 + 2\sqrt{2} & 2 + 2\sqrt{2} & 1 \\ 3 - 2\sqrt{2} & 2 - 2\sqrt{2} & 1 \end{vmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Find the value of the determinant |{:(-1,2,1),(3+2sqrt(2),2+2sqrt(2),1),(3-2sqrt(2),2-2sqrt(2),1):}|

The value of |-1 2 1 3+2sqrt(2) 2+2sqrt(2) 1 3-2sqrt(2) 2-2sqrt(2) 1| is equal to a. zero b. -16sqrt(2) c. -8sqrt(2) d. none of these

1+(sqrt(2))/(2-sqrt(2)) is equal to

If sqrt(2)=1. 4142 , then sqrt((sqrt(2)-1)/(sqrt(2)+1)) is equal to

(sqrt(3)-1/(sqrt(3)))^2 is equal to

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

The matrix A={:[((1)/(sqrt(2)),(1)/(sqrt(2))),((-1)/(sqrt(2)),(-1)/(sqrt(2)))]:} is

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Simplify: (1)/(sqrt(3+2sqrt(2)))+(1)/(sqrt(3+2sqrt(2)))

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. The value of |{:(-1,,2,,1),(3+2sqrt(2),,2+2sqrt(2),,1),(3-2sqrt(2),,2...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |