Home
Class 12
MATHS
If a1, a2, a3,....... are in G.P. then t...

If `a_1, a_2, a_3,.......` are in G.P. then the value of determinant `|(log(a_n), log(a_(n+1)), log(a_(n+2))), (log(a_(n+3)), log(a_(n+4)), log(a_(n+5))), (log(a_(n+6)), log(a_(n+7)), log(a_(n+8)))|` equals (A) 0 (B) 1 (C) 2 (D) 3

A

1

B

0

C

2a

D

a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} \log(a_n) & \log(a_{n+1}) & \log(a_{n+2}) \\ \log(a_{n+3}) & \log(a_{n+4}) & \log(a_{n+5}) \\ \log(a_{n+6}) & \log(a_{n+7}) & \log(a_{n+8}) \end{vmatrix} \] Given that \(a_1, a_2, a_3, \ldots\) are in a geometric progression (G.P.), we can express the terms as follows: \[ a_n = a \cdot r^{n-1}, \quad a_{n+k} = a \cdot r^{n+k-1} \quad \text{for } k = 0, 1, 2, \ldots \] where \(a\) is the first term and \(r\) is the common ratio. ### Step 1: Rewrite the logarithmic terms Using the properties of logarithms, we can rewrite the logarithmic terms: \[ \log(a_n) = \log(a) + (n-1) \log(r) \] \[ \log(a_{n+k}) = \log(a) + (n+k-1) \log(r) \quad \text{for } k = 0, 1, 2, \ldots, 8 \] ### Step 2: Substitute into the determinant Substituting these into the determinant gives: \[ D = \begin{vmatrix} \log(a) + (n-1) \log(r) & \log(a) + n \log(r) & \log(a) + (n+1) \log(r) \\ \log(a) + (n+2) \log(r) & \log(a) + (n+3) \log(r) & \log(a) + (n+4) \log(r) \\ \log(a) + (n+5) \log(r) & \log(a) + (n+6) \log(r) & \log(a) + (n+7) \log(r) \end{vmatrix} \] ### Step 3: Factor out common terms We can factor out the common terms from each column: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \cdot \log(a) + \begin{vmatrix} (n-1) & n & n+1 \\ (n+2) & (n+3) & (n+4) \\ (n+5) & (n+6) & (n+7) \end{vmatrix} \cdot \log(r) \] ### Step 4: Analyze the determinant Notice that the first part of the determinant simplifies to zero because all rows are identical. Therefore, we only need to evaluate the second determinant. ### Step 5: Evaluate the second determinant The second determinant can be simplified as follows: \[ D' = \begin{vmatrix} (n-1) & n & n+1 \\ (n+2) & (n+3) & (n+4) \\ (n+5) & (n+6) & (n+7) \end{vmatrix} \] Using properties of determinants, we can see that the rows are also in arithmetic progression, which means that the determinant will also evaluate to zero. ### Conclusion Thus, the value of the original determinant \(D\) is: \[ D = 0 \] Therefore, the answer is (A) 0.

To solve the problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} \log(a_n) & \log(a_{n+1}) & \log(a_{n+2}) \\ \log(a_{n+3}) & \log(a_{n+4}) & \log(a_{n+5}) \\ \log(a_{n+6}) & \log(a_{n+7}) & \log(a_{n+8}) \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If a_(n) gt a_(n-1) gt …. gt a_(2) gt a_(1) gt 1 , then the value of "log"_(a_(1))"log"_(a_(2)) "log"_(a_(3))…."log"_(a_(n)) is equal to

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If 2^(a1),2^(a2),2^(a3).......2^(ar) are in geometric progression , then |{:(a_1,a_2,a_3),(a_(n+1),a_(n+2),a_(n+3)),(a_(2n+1),a_(2n+2),a_(2n+3)):}| is equal to

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

Let a_(1),a_(2),a_(3), …, a_(10) be in G.P. with a_(i) gt 0 for i=1, 2, …, 10 and S be te set of pairs (r, k), r, k in N (the set of natural numbers) for which |(log_(e)a_(1)^(r)a_(2)^(k),log_(e)a_(2)^(r)a_(3)^(k),log_(e)a_(3)^(r)a_(4)^(k)),(log_(e)a_(4)^(r)a_(5)^(k),log_(e)a_(5)^(r)a_(6)^(k),log_(e)a_(6)^(r)a_(7)^(k)),(log_(e)a_(7)^(r)a_(8)^(k),log_(e)a_(8)^(r)a_(9)^(k),log_(e)a_(9)^(r)a_(10)^(k))| = 0. Then the number of elements in S is

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

If a_(1)gt0 for all i=1,2,…..,n . Then, the least value of (a_(1)+a_(2)+……+a_(n))((1)/(a_(1))+(1)/(a_(2))+…+(1)/(a_(n))) , is

If a_(1),a_(2),a_(3),"........",a_(n) are in AP with a_(1)=0 , prove that (a_(3))/(a_(2))+(a_(4))/(a_(3))+"......"+(a_(n))/(a_(n-1))-a_(2)((1)/(a_(2))+(1)/(a_(3))"+........"+(1)/(a_(n-2)))=(a_(n-1))/(a_(2))+(a_(2))/(a_(n-1)) .

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common ratio r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. If a1, a2, a3,....... are in G.P. then the value of determinant |(log(...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |