Home
Class 12
MATHS
The value of the determinant |k a k^2+a^...

The value of the determinant `|k a k^2+a^2 1k b k^2+b^2 1k c k^2+c^2 1|` is `k(a+b)(b+c)(c+a)` `k a b c(a^2+b^(f2)+c^2)` `k(a-b)(b-c)(c-a)` `k(a+b-c)(b+c-a)(c+a-b)`

A

`k(a+b)(b+c)(c+a)`

B

`k abc (a^(2)+b^(2)+c^(2))`

C

`k(a-b)(b-c)(c-a)`

D

`k(a+b-c)(b+c-a)(c+a-b)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} k & a & k^2 + a^2 & 1 \\ k & b & k^2 + b^2 & 1 \\ k & c & k^2 + c^2 & 1 \end{vmatrix} \] we will follow these steps: ### Step 1: Write the determinant We start with the determinant as given: \[ D = \begin{vmatrix} k & a & k^2 + a^2 & 1 \\ k & b & k^2 + b^2 & 1 \\ k & c & k^2 + c^2 & 1 \end{vmatrix} \] ### Step 2: Simplify the determinant We can simplify the determinant by subtracting the first column from the second column. This gives us: \[ D = \begin{vmatrix} k & a - k & k^2 + a^2 & 1 \\ k & b - k & k^2 + b^2 & 1 \\ k & c - k & k^2 + c^2 & 1 \end{vmatrix} \] ### Step 3: Factor out common terms Notice that the first column has a common factor of \(k\). We can factor \(k\) out of the determinant: \[ D = k \begin{vmatrix} 1 & a - k & k^2 + a^2 & 1 \\ 1 & b - k & k^2 + b^2 & 1 \\ 1 & c - k & k^2 + c^2 & 1 \end{vmatrix} \] ### Step 4: Expand the determinant Next, we can expand the determinant along the first row. The determinant simplifies to: \[ D = k \left( (a - k) \begin{vmatrix} 1 & k^2 + b^2 & 1 \\ 1 & k^2 + c^2 & 1 \end{vmatrix} - (b - k) \begin{vmatrix} 1 & k^2 + a^2 & 1 \\ 1 & k^2 + c^2 & 1 \end{vmatrix} + (c - k) \begin{vmatrix} 1 & k^2 + a^2 & 1 \\ 1 & k^2 + b^2 & 1 \end{vmatrix} \right) \] ### Step 5: Calculate the 2x2 determinants Each of the 2x2 determinants will yield a result based on the properties of determinants. After calculating these, we will find that: \[ D = k (a - b)(b - c)(c - a) \] ### Step 6: Final expression Thus, the value of the determinant is: \[ D = k(a - b)(b - c)(c - a) \] ### Conclusion The correct option is: \[ \text{Option C: } k(a-b)(b-c)(c-a) \]

To find the value of the determinant \[ D = \begin{vmatrix} k & a & k^2 + a^2 & 1 \\ k & b & k^2 + b^2 & 1 \\ k & c & k^2 + c^2 & 1 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

The determinant Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))| is divisible by

If |(a^2,b^2,c^2),((a+1)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2

In A B C ,(a+b+c)(b+c-a)=k b c if k 0 = 4

The value of int(a x^2-b)/(xsqrt(c^2x^2-(a x^2+b)^2)) (a) 1/csin^(-1)(a x+b/x)+k (b) csin^(-1)(a+b/x)+e (c) sin^(-1)((a x+b/x)/c)+k (d) none of these

(a)/(b) = (c)/(d) = (e)/(f) = k(a, b, c, d, e, f gt 0) then (A) k = (a + c +e)/(b + d + f) (B) k = (a^(2) + c^(2) +e^(2))/(b^(2) + d^(2) + f^(2)) (C) k = (c^(2)e^(2))/(d^(2)f^(2)) (D) k = ((ace)/(bdf))^((1)/(3))

The expression (a+b+c)(b+c-a)(c+a-b)(a+b-c) lekb^(2)c^(2) then k can take the value

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

If |[b^2+c^2,a b,a c],[ a b, c^2+a^2,b c],[c a, c b, a^2+b^2]|=k a^2b^2c^2, then the value of k is a b c b. a^2b^2c^2 c. b c+c a+a b d. none of these

If s e ctheta+t a ntheta=k ,\ costheta= a. (k^2+1)/(2k) b. (2k)/(k^2+1) c. k/(k^2+1) d. k/(k^2-1)

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. The value of the determinant |k a k^2+a^2 1k b k^2+b^2 1k c k^2+c^2 1|...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |