Home
Class 12
MATHS
The value of the determinant |(1,1,1),(....

The value of the determinant `|(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))|` is equal to

A

1

B

-1

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 & 1 & 1 \\ \binom{m}{1} & \binom{m+1}{1} & \binom{m+2}{1} \\ \binom{m}{2} & \binom{m+1}{2} & \binom{m+2}{2} \end{vmatrix} \] we will simplify it step by step. ### Step 1: Write the determinant We start with the determinant as given: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ \binom{m}{1} & \binom{m+1}{1} & \binom{m+2}{1} \\ \binom{m}{2} & \binom{m+1}{2} & \binom{m+2}{2} \end{vmatrix} \] ### Step 2: Simplify the second and third rows Recall the binomial coefficient properties: - \(\binom{n}{1} = n\) - \(\binom{n}{2} = \frac{n(n-1)}{2}\) Thus, we can rewrite the second and third rows: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ m & m + 1 & m + 2 \\ \frac{m(m-1)}{2} & \frac{(m+1)m}{2} & \frac{(m+2)(m+1)}{2} \end{vmatrix} \] ### Step 3: Perform column operations To simplify the determinant, we can perform column operations. We will subtract the first column from the second and third columns: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ m & (m + 1 - m) & (m + 2 - m) \\ \frac{m(m-1)}{2} & \frac{(m+1)m}{2} - \frac{m(m-1)}{2} & \frac{(m+2)(m+1)}{2} - \frac{m(m-1)}{2} \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 1 & 0 & 1 \\ m & 1 & 2 \\ \frac{m(m-1)}{2} & \frac{(m+1)m - m(m-1)}{2} & \frac{(m+2)(m+1) - m(m-1)}{2} \end{vmatrix} \] ### Step 4: Simplify the second row The second row simplifies to: \[ D = \begin{vmatrix} 1 & 0 & 1 \\ m & 1 & 2 \\ \frac{m(m-1)}{2} & \frac{(m+1)m - m(m-1)}{2} & \frac{(m+2)(m+1) - m(m-1)}{2} \end{vmatrix} \] ### Step 5: Calculate the determinant Now we can expand the determinant along the first row: \[ D = 1 \cdot \begin{vmatrix} 1 & 2 \\ \frac{(m+1)m - m(m-1)}{2} & \frac{(m+2)(m+1) - m(m-1)}{2} \end{vmatrix} \] Calculating this determinant results in: \[ D = 1 \cdot \left(1 \cdot \frac{(m+2)(m+1) - m(m-1)}{2} - 2 \cdot \frac{(m+1)m - m(m-1)}{2}\right) \] ### Step 6: Final simplification After simplification, we find that the determinant evaluates to 1. Thus, the value of the determinant is: \[ \boxed{1} \]

To find the value of the determinant \[ D = \begin{vmatrix} 1 & 1 & 1 \\ \binom{m}{1} & \binom{m+1}{1} & \binom{m+2}{1} \\ \binom{m}{2} & \binom{m+1}{2} & \binom{m+2}{2} \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If m= ""^(n) C_(2), then ""^(m) C_(2) is equal to

""^(m)C_(r+1)+ sum_(k=m)^(n)""^(k)C_(r) is equal to :

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

sum_(m=1)^(n)(sum_(k=1)^(m)(sum_(p=k)^(m)"^(n)C_(m)*^(m)C_(p)*^(p)C_(k)))=

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r(0 le r le 30) for which S = .^(20)C_(r).^(10)C_(0) + .^(20)C_(r-1).^(10)C_(1) + ........ + .^(20)C_(0).^(10)C_(r) is minimum can not be

If m in N and mgeq2 prove that: |1 1 1\ ^m C_1\ ^(m+1)C_1\ ^(m+2)C_1\ ^m C_2\ ^(m+1)C_2\ ^(m+2)C_2|=1 .

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to a. .^(m+n)C_(n) - 1 b. .^(m+n)C_(n-1) c. .^(m)C_(1) + ^(m+1)C_(2) + ^(m+2)C_(3) + "…." + ^(m+n-1)C_(n) d. .^(m+n)C_(m) - 1

The value of ^n C_1+^(n+1)C_2+^(n+2)C_3++^(n+m-1)C_m is equal to

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. The value of the determinant |(1,1,1),(.^(m)C(1),.^(m +1)C(1),.^(m+2)C...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |