Home
Class 12
MATHS
if f (x) = |{:(x,,a,,a),(a,,x,,a),(a,,a...

if `f (x) = |{:(x,,a,,a),(a,,x,,a),(a,,a,,x):}|=0` then

A

`f(x) =0" and " f(x) =0` has one common root

B

`f(x) =0" and " f(x) =0` has one common root

C

sum of roots of f(x) =0 is -3a

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given in the function \( f(x) = \begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix} \) and find the values of \( x \) for which \( f(x) = 0 \). ### Step-by-Step Solution: 1. **Write the Determinant**: \[ f(x) = \begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix} \] 2. **Add the Columns**: We can simplify the determinant by adding all the columns together. Let’s replace the first column \( C_1 \) with \( C_1 + C_2 + C_3 \): \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ f(x) = \begin{vmatrix} x + 2a & a & a \\ a & x & a \\ a & a & x \end{vmatrix} \] 3. **Factor Out Common Terms**: We can factor out \( (x + 2a) \) from the first column: \[ f(x) = (x + 2a) \begin{vmatrix} 1 & a & a \\ a & x & a \\ a & a & x \end{vmatrix} \] 4. **Subtract Rows**: To simplify the determinant further, we can subtract the first row from the second and third rows: \[ R_2 \rightarrow R_2 - R_1 \quad \text{and} \quad R_3 \rightarrow R_3 - R_1 \] This results in: \[ f(x) = (x + 2a) \begin{vmatrix} 1 & a & a \\ 0 & x - a & 0 \\ 0 & 0 & x - a \end{vmatrix} \] 5. **Calculate the Determinant**: The determinant can now be calculated: \[ f(x) = (x + 2a) \cdot 1 \cdot (x - a)(x - a) = (x + 2a)(x - a)^2 \] 6. **Set the Function to Zero**: To find the roots, we set \( f(x) = 0 \): \[ (x + 2a)(x - a)^2 = 0 \] 7. **Find the Roots**: The roots are found by solving each factor: - From \( x + 2a = 0 \): \[ x = -2a \] - From \( (x - a)^2 = 0 \): \[ x = a \quad (\text{with multiplicity 2}) \] ### Summary of Roots: The roots of the equation are: - \( x = a \) (with multiplicity 2) - \( x = -2a \) (with multiplicity 1) ### Final Answer: The roots are \( a, a, -2a \).

To solve the problem, we need to evaluate the determinant given in the function \( f(x) = \begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix} \) and find the values of \( x \) for which \( f(x) = 0 \). ### Step-by-Step Solution: 1. **Write the Determinant**: \[ f(x) = \begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0):} , then f(x) is

If f(x) is defined as follows: f(x)={{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

If f(x) = {{:(|x-1|([x]-x)",",x ne 1),(0",",x = 1):} , then

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

If f(x)={{:(,(x-a)^(n)cos ((1)/(x-a)), x ne a),(,0,x=a):} then at x=a, f(x) is

f(x) ={{:((x)/(2x^(2)+|x|),xne0),( 1, x=0):} then f(x) is

Show that function f(x) given by f(x)={(x sin(1/x),,,x ne 0),(0,,,x=0):} is continuous at x=0

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

Let f(x) be a function defined by f(x) = {{:((3x)/(|x|+2x),x ne 0),(0,x = 0):} Show that lim_(x rarr 0) f(x) does not exist.

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. if f (x) = |{:(x,,a,,a),(a,,x,,a),(a,,a,,x):}|=0 then

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |