Home
Class 12
MATHS
If xneynez" and " |{:(x,x^(2),1+x^(3)),(...

If `xneynez" and " |{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0,` then xyz =

A

` 1`

B

`2`

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant and set it equal to zero. The determinant is given as follows: \[ D = \begin{vmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} \] We need to find the value of \(xyz\) such that \(D = 0\). ### Step 1: Expand the Determinant Using the properties of determinants, we can expand \(D\): \[ D = x \begin{vmatrix} y^2 & 1 + y^3 \\ z^2 & 1 + z^3 \end{vmatrix} - x^2 \begin{vmatrix} y & 1 + y^3 \\ z & 1 + z^3 \end{vmatrix} + (1 + x^3) \begin{vmatrix} y & y^2 \\ z & z^2 \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants 1. **First Determinant**: \[ \begin{vmatrix} y^2 & 1 + y^3 \\ z^2 & 1 + z^3 \end{vmatrix} = y^2(1 + z^3) - z^2(1 + y^3) = y^2 + y^2z^3 - z^2 - z^2y^3 \] 2. **Second Determinant**: \[ \begin{vmatrix} y & 1 + y^3 \\ z & 1 + z^3 \end{vmatrix} = y(1 + z^3) - z(1 + y^3) = y + yz^3 - z - zy^3 \] 3. **Third Determinant**: \[ \begin{vmatrix} y & y^2 \\ z & z^2 \end{vmatrix} = y \cdot z^2 - z \cdot y^2 = yz^2 - zy^2 = y(z^2 - zy) \] ### Step 3: Substitute Back into the Determinant Substituting these back into the expression for \(D\): \[ D = x(y^2 + y^2z^3 - z^2 - z^2y^3) - x^2(y + yz^3 - z - zy^3) + (1 + x^3)(y(z^2 - zy)) \] ### Step 4: Set the Determinant to Zero Setting \(D = 0\): \[ x(y^2 + y^2z^3 - z^2 - z^2y^3) - x^2(y + yz^3 - z - zy^3) + (1 + x^3)(y(z^2 - zy)) = 0 \] ### Step 5: Factor Out Common Terms Notice that if we factor out \((1 + xyz)\) from the determinant, we can simplify our expression. We can also rearrange the terms to isolate \(xyz\): \[ 1 + xyz = 0 \implies xyz = -1 \] ### Conclusion Thus, the value of \(xyz\) is: \[ \boxed{-1} \]

To solve the given problem, we need to evaluate the determinant and set it equal to zero. The determinant is given as follows: \[ D = \begin{vmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a. 1 b. 2 c. -1 d. 2

If |(x^k,x^(k+2),x^(k+3)), (y^k,y^(k+2),y^(k+3)), (z^k,z^(k+2),z^(k+3))|=(x-y)(y-z)(z-x){1/x+1/y+1/z} then k=

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}| =(x-y)(y-z)(z-x)(x+y+z)

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove that x y z=-1 .

If x,y,z are different and Delta=|[x,x^2,x^3-1],[y,y^2,y^3-1],[z,z^2,z^3-1]|=0 , then using properties of determinants, show that xyz=1

For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z^2 ,1+p z^3]|=(1+p x y z)(x-y)(y-z)(z-x) .

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. If xneynez" and " |{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |