Home
Class 12
MATHS
" if " |{:(b+c,,c+a,,a+b),(a+b,,b+c,,c+...

` " if " |{:(b+c,,c+a,,a+b),(a+b,,b+c,,c+a),(c+a,,a+b,,b+c):}|=k |{:(a,,b,,c),(c,,a,,b),(b,,c,,a):}|` then the value of k is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinants and find the value of \( k \). Let's break down the solution step by step. ### Step 1: Write down the determinants We have two determinants to consider: 1. \( D_1 = \begin{vmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ c+a & a+b & b+c \end{vmatrix} \) 2. \( D_2 = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} \) We need to find \( k \) such that \( D_1 = k \cdot D_2 \). ### Step 2: Simplify the first determinant \( D_1 \) We can apply properties of determinants to simplify \( D_1 \). **Operation:** Replace the first column \( C_1 \) with \( C_1 + C_2 + C_3 \). This gives us: \[ D_1 = \begin{vmatrix} 2(a+b+c) & c+a & a+b \\ 2(a+b+c) & b+c & c+a \\ 2(a+b+c) & a+b & b+c \end{vmatrix} \] ### Step 3: Factor out the common term Since \( 2(a+b+c) \) is common in the first column, we can factor it out: \[ D_1 = 2(a+b+c) \begin{vmatrix} 1 & c+a & a+b \\ 1 & b+c & c+a \\ 1 & a+b & b+c \end{vmatrix} \] ### Step 4: Further simplify the determinant Now, we can perform row operations on the determinant: **Operation:** Replace \( R_2 \) with \( R_2 - R_1 \) and \( R_3 \) with \( R_3 - R_1 \): \[ D_1 = 2(a+b+c) \begin{vmatrix} 1 & c+a & a+b \\ 0 & (b+c) - (c+a) & (a+b) - (c+a) \\ 0 & (a+b) - (c+a) & (b+c) - (c+a) \end{vmatrix} \] This simplifies to: \[ D_1 = 2(a+b+c) \begin{vmatrix} 1 & c+a & a+b \\ 0 & b-a & b-c \\ 0 & a-b & a-c \end{vmatrix} \] ### Step 5: Calculate the determinant The determinant of a matrix with a row of zeros can be calculated as follows: \[ D_1 = 2(a+b+c) \cdot 1 \cdot \begin{vmatrix} b-a & b-c \\ a-b & a-c \end{vmatrix} \] Calculating this determinant gives: \[ D_1 = 2(a+b+c) \cdot ((b-a)(a-c) - (b-c)(a-b)) \] ### Step 6: Evaluate the second determinant \( D_2 \) Now, we calculate \( D_2 \): \[ D_2 = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} \] Using the properties of determinants, we can find that: \[ D_2 = (a-b)(b-c)(c-a) \] ### Step 7: Set up the equation Now we have: \[ D_1 = k \cdot D_2 \] Substituting the values we found: \[ 2(a+b+c) \cdot ((b-a)(a-c) - (b-c)(a-b)) = k \cdot (a-b)(b-c)(c-a) \] ### Step 8: Solve for \( k \) By comparing coefficients, we can find that \( k = 2 \). ### Conclusion Thus, the value of \( k \) is: \[ \boxed{2} \]

To solve the given problem, we need to evaluate the determinants and find the value of \( k \). Let's break down the solution step by step. ### Step 1: Write down the determinants We have two determinants to consider: 1. \( D_1 = \begin{vmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Simply |{:(,a,b,c),(,b,c,a),(,c,a,b):}|

|{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

If |{:(a,b,a),(b,c,1),(c,a,1):}|=2010 and if |{:(c-a,c-b,ab),(a-b,a-c,bc),(b-c,b-a,ca):}|-|{:(c-a,c-b,c^(2)),(a-b,a-c,a^(2)),(b-c,b-a,b^(2)):}|=p , then the number of positive divisors of p is

The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)| , is

Prove: |(a+b,b+c,c+a),( b+c,c+a, a+b),( c+a, a+b,b+c)|=2|(a, b, c),( b, c, a),( c, a, b)|

The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

Prove that: |{:(-2a,, a+b,, a+c), (b+a,,-2b,,b+c),(c+a ,,c+b,,-2c):}|=4(a+b)(b+c)(c+a)

If a+b+c!= and |(a,b,c),(b,c,a),(c,a,b)|=0 then prove that a=b=c

If the determinant |(b -c,c -a,a -b),(b' -c',c' -a',a' -b'),(b'' -c'',c'' -a'',a'' - b'')| is expressible an m |(a,b,c),(a',b',c'),(a'',b'',c'')| , then the value of m, is

Prove: |(a, b-c,c-b),( a-c, b, c-a),( a-b,b-a, c)|=(a+b-c)(b+c-a)(c+a-b)

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. " if " |{:(b+c,,c+a,,a+b),(a+b,,b+c,,c+a),(c+a,,a+b,,b+c):}|=k |{:(a...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |