Home
Class 12
MATHS
The value of the determinant |[loga(x/y)...

The value of the determinant `|[log_a(x/y), log_a(y/z), log_a(z/x)], [log_b (y/z), log_b (z/x), log_b (x/y)], [log_c (z/x), log_c (x/y), log_c (y/z)]|`

A

1

B

-1

C

0

D

`(1)/(6) log _(a) xyz`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} \log_a\left(\frac{x}{y}\right) & \log_a\left(\frac{y}{z}\right) & \log_a\left(\frac{z}{x}\right) \\ \log_b\left(\frac{y}{z}\right) & \log_b\left(\frac{z}{x}\right) & \log_b\left(\frac{x}{y}\right) \\ \log_c\left(\frac{z}{x}\right) & \log_c\left(\frac{x}{y}\right) & \log_c\left(\frac{y}{z}\right) \end{vmatrix} \] we will use properties of logarithms and determinants. ### Step 1: Rewrite the Determinant We start by rewriting the determinant in a clearer form: \[ D = \begin{vmatrix} \log_a(x) - \log_a(y) & \log_a(y) - \log_a(z) & \log_a(z) - \log_a(x) \\ \log_b(y) - \log_b(z) & \log_b(z) - \log_b(x) & \log_b(x) - \log_b(y) \\ \log_c(z) - \log_c(x) & \log_c(x) - \log_c(y) & \log_c(y) - \log_c(z) \end{vmatrix} \] ### Step 2: Apply the Property of Determinants Using the property of determinants that allows us to replace a column by the sum of itself and other columns, we can add all three columns together to the first column: \[ D = \begin{vmatrix} \log_a\left(\frac{x}{y}\right) + \log_a\left(\frac{y}{z}\right) + \log_a\left(\frac{z}{x}\right) & \log_a\left(\frac{y}{z}\right) & \log_a\left(\frac{z}{x}\right) \\ \log_b\left(\frac{y}{z}\right) + \log_b\left(\frac{z}{x}\right) + \log_b\left(\frac{x}{y}\right) & \log_b\left(\frac{z}{x}\right) & \log_b\left(\frac{x}{y}\right) \\ \log_c\left(\frac{z}{x}\right) + \log_c\left(\frac{x}{y}\right) + \log_c\left(\frac{y}{z}\right) & \log_c\left(\frac{x}{y}\right) & \log_c\left(\frac{y}{z}\right) \end{vmatrix} \] ### Step 3: Simplify Using Logarithmic Properties Using the property of logarithms that states \(\log_m(a) + \log_m(b) + \log_m(c) = \log_m(abc)\), we can simplify the first column: \[ D = \begin{vmatrix} \log_a\left(\frac{x}{y} \cdot \frac{y}{z} \cdot \frac{z}{x}\right) & \log_a\left(\frac{y}{z}\right) & \log_a\left(\frac{z}{x}\right) \\ \log_b\left(\frac{y}{z} \cdot \frac{z}{x} \cdot \frac{x}{y}\right) & \log_b\left(\frac{z}{x}\right) & \log_b\left(\frac{x}{y}\right) \\ \log_c\left(\frac{z}{x} \cdot \frac{x}{y} \cdot \frac{y}{z}\right) & \log_c\left(\frac{x}{y}\right) & \log_c\left(\frac{y}{z}\right) \end{vmatrix} \] ### Step 4: Evaluate the Logarithmic Products Notice that: \[ \frac{x}{y} \cdot \frac{y}{z} \cdot \frac{z}{x} = 1 \] Thus, we have: \[ D = \begin{vmatrix} \log_a(1) & \log_a\left(\frac{y}{z}\right) & \log_a\left(\frac{z}{x}\right) \\ \log_b(1) & \log_b\left(\frac{z}{x}\right) & \log_b\left(\frac{x}{y}\right) \\ \log_c(1) & \log_c\left(\frac{x}{y}\right) & \log_c\left(\frac{y}{z}\right) \end{vmatrix} \] ### Step 5: Substitute Values of Logarithms Since \(\log_a(1) = 0\), \(\log_b(1) = 0\), and \(\log_c(1) = 0\), the first column becomes zero: \[ D = \begin{vmatrix} 0 & \log_a\left(\frac{y}{z}\right) & \log_a\left(\frac{z}{x}\right) \\ 0 & \log_b\left(\frac{z}{x}\right) & \log_b\left(\frac{x}{y}\right) \\ 0 & \log_c\left(\frac{x}{y}\right) & \log_c\left(\frac{y}{z}\right) \end{vmatrix} \] ### Step 6: Conclude the Determinant Value Since one entire column of the determinant is zero, we conclude that the value of the determinant is: \[ D = 0 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{0} \]

To solve the determinant \[ D = \begin{vmatrix} \log_a\left(\frac{x}{y}\right) & \log_a\left(\frac{y}{z}\right) & \log_a\left(\frac{z}{x}\right) \\ \log_b\left(\frac{y}{z}\right) & \log_b\left(\frac{z}{x}\right) & \log_b\left(\frac{x}{y}\right) \\ \log_c\left(\frac{z}{x}\right) & \log_c\left(\frac{x}{y}\right) & \log_c\left(\frac{y}{z}\right) \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If log_b x=p and log_b y=q, then log_b xy=

For positive numbers x, y and z, the numerical value of the determinant |{:(1,"log"_(x)y, "log"_(x)z),("log"_(y)x, 1, "log"_(y)z),("log"_(z)x, "log"_(z)y, 1):}| is……

Prove that : log _ y^(x) . log _z^(y) . log _a^(z) = log _a ^(x)

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

For positive numbers x ,\ y\ a n d\ z the numerical value of the determinant |1(log)_x y(log)_x z(log)_y x1(log)_y z(log)_z x(log)_z y1| is- a. 0 b. logx y z c. "log"(x+y+z) d. logx\ logy\ logz

Prove that the value of each the following determinants is zero: |[logx,logy,logz],[ log2x ,log2y ,log2z ],[log3x, log3y ,log3z]|

For positive numbers x, y and z, the numerical value of the determinant |[1,log_xy,log_xz],[log_yx,1,log_yz],[log_zx,log_zy,1]| is

If log_a x, log_b x, log_c x are in A.P then c^2=

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

Sum of values of x and y satisfying log_(x)(log_(3)(log_(x)y))=0 and log_(y)27=1 is :

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. The value of the determinant |[loga(x/y), loga(y/z), loga(z/x)], [logb...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |