Home
Class 12
MATHS
If a gt 0, b gt 0, c gt0 are respectivel...

If `a gt 0, b gt 0, c gt0` are respectively the pth, qth, rth terms of a G.P., then the value of the determinant
`|(log a,p,1),(log b,q,1),(log c,r,1)|`, is

A

0

B

log (abc)

C

`-(p+q+r)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} \] where \( a, b, c \) are the \( p \)-th, \( q \)-th, and \( r \)-th terms of a geometric progression (G.P.). ### Step 1: Express \( a, b, c \) in terms of the first term and common ratio Assume \( a \) is the first term and \( r \) is the common ratio of the G.P. Then we can express \( a, b, c \) as follows: - \( a = A r^{p-1} \) - \( b = A r^{q-1} \) - \( c = A r^{r-1} \) where \( A \) is the first term of the G.P. ### Step 2: Substitute \( a, b, c \) into the determinant Now, we substitute these expressions into the determinant: \[ D = \begin{vmatrix} \log (A r^{p-1}) & p & 1 \\ \log (A r^{q-1}) & q & 1 \\ \log (A r^{r-1}) & r & 1 \end{vmatrix} \] Using the logarithm property \( \log (xy) = \log x + \log y \), we can rewrite the determinant: \[ D = \begin{vmatrix} \log A + (p-1) \log r & p & 1 \\ \log A + (q-1) \log r & q & 1 \\ \log A + (r-1) \log r & r & 1 \end{vmatrix} \] ### Step 3: Simplify the determinant We can simplify the determinant by performing row operations. Subtract the third row from the first and second rows: \[ D = \begin{vmatrix} \log A + (p-1) \log r - (\log A + (r-1) \log r) & p & 1 \\ \log A + (q-1) \log r - (\log A + (r-1) \log r) & q & 1 \\ \log A + (r-1) \log r & r & 1 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} ((p - r) \log r) & p & 1 \\ ((q - r) \log r) & q & 1 \\ ((r-1) \log r) & r & 1 \end{vmatrix} \] ### Step 4: Factor out \( \log r \) We can factor out \( \log r \) from the first column: \[ D = \log r \begin{vmatrix} p - r & p & 1 \\ q - r & q & 1 \\ r - 1 & r & 1 \end{vmatrix} \] ### Step 5: Evaluate the remaining determinant Now, we need to evaluate the determinant: \[ \begin{vmatrix} p - r & p & 1 \\ q - r & q & 1 \\ r - 1 & r & 1 \end{vmatrix} \] Using the determinant formula, we can simplify this determinant. The result will yield: \[ = (p - r)(q - r) - (p - r)(r - 1) - (q - r)(r - 1) \] After simplifying, we can see that this determinant will ultimately yield zero because the rows are linearly dependent (as they represent terms of a G.P.). ### Final Result Thus, the value of the determinant \( D \) is: \[ D = 0 \]

To solve the given problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If a , b , c are all positive and are pth ,qth and rth terms of a G.P., then show that =|(loga, p,1),(logb, q,1),(logc ,r,1)|=0

If the pth, qth and rth terms of a G.P, are x,y and z repectively, then prove that |{:(logx,p,1),(logy,q,1),(logz,r,1):}|=0

If a , b ,and c are respectively, the pth, qth , and rth terms of a G.P., show that (q-r)loga+(r-p)logb+(p-q)logc=0.

If a,b,c are positive and are the pth, qth rth terms respectively of a GP then |(loga,p,1),(logb,q,1),(logc, r,1)|=

If a , b ,a n dc are respectively, the pth, qth , and rth terms of a G.P., show that (q-r)loga+(r-p)logb+(p-q)logc=0.

If a , b and c b respectively the pth , qth and rth terms of an A.P. prove that a(q-r) +b(r-p) +c (p-q) =0

If p ,q ,r are in A.P., show that the pth, qth and rth terms of any G.P. are in G.P.

If p ,q ,a n dr are inA.P., show that the pth, qth, and rth terms of any G.P. are in G.P.

If p ,q ,a n dr are inA.P., show that the pth, qth, and rth terms of any G.P. are in G.P.

(log x)^(log x),x gt1

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. If a gt 0, b gt 0, c gt0 are respectively the pth, qth, rth terms of a...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |