Home
Class 12
MATHS
the value of Sigma(r=2)^(n) (-2)^(r ) ...

the value of `Sigma_(r=2)^(n) (-2)^(r ) |{:( ""^(n-2)C_(r-2),,""^(n-2)C_(r-1),,""^(n-2)C_(r)),(-3,,1 ,,1),(2,,-1,,0):}| (n gt 2)`

A

`2n -1+(-1)^(n)`

B

`2n+1+(-1)^(n-1)`

C

`2n-3+(-1)^(n)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \Sigma_{r=2}^{n} (-2)^{r} \begin{vmatrix} {^{n-2}C_{r-2}} & {^{n-2}C_{r-1}} & {^{n-2}C_{r}} \\ -3 & 1 & 1 \\ 2 & -1 & 0 \end{vmatrix} \quad (n > 2) \] we will follow these steps: ### Step 1: Evaluate the Determinant First, we need to evaluate the determinant \[ D = \begin{vmatrix} {^{n-2}C_{r-2}} & {^{n-2}C_{r-1}} & {^{n-2}C_{r}} \\ -3 & 1 & 1 \\ 2 & -1 & 0 \end{vmatrix} \] We can use the properties of determinants to simplify this. We can perform row operations to make the determinant easier to calculate. ### Step 2: Apply Row Operations We can apply the operation \( R_1 \rightarrow R_1 + 3R_2 + 2R_3 \): \[ D = \begin{vmatrix} {^{n-2}C_{r-2} + 3 \cdot 1 + 2 \cdot 0} & {^{n-2}C_{r-1} + 3 \cdot 1 + 2 \cdot (-1)} & {^{n-2}C_{r} + 3 \cdot 1 + 2 \cdot 0} \\ -3 & 1 & 1 \\ 2 & -1 & 0 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} {^{n-2}C_{r-2} + 3} & {^{n-2}C_{r-1} + 1} & {^{n-2}C_{r} + 3} \\ -3 & 1 & 1 \\ 2 & -1 & 0 \end{vmatrix} \] ### Step 3: Further Simplification Now, we can evaluate the determinant using the first row: \[ D = (^{n-2}C_{r-2} + 3) \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} - (^{n-2}C_{r-1} + 1) \begin{vmatrix} -3 & 1 \\ 2 & 0 \end{vmatrix} + (^{n-2}C_{r} + 3) \begin{vmatrix} -3 & 1 \\ 2 & -1 \end{vmatrix} \] Calculating these 2x2 determinants gives: 1. \(\begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = -1\) 2. \(\begin{vmatrix} -3 & 1 \\ 2 & 0 \end{vmatrix} = 6\) 3. \(\begin{vmatrix} -3 & 1 \\ 2 & -1 \end{vmatrix} = -1\) Substituting these values back into the determinant expression: \[ D = (^{n-2}C_{r-2} + 3)(-1) - (^{n-2}C_{r-1} + 1)(6) + (^{n-2}C_{r} + 3)(-1) \] ### Step 4: Combine Terms Now we can simplify \(D\): \[ D = -^{n-2}C_{r-2} - 3 - 6^{n-2}C_{r-1} - 6 + -^{n-2}C_{r} - 3 \] Combining like terms gives: \[ D = -^{n-2}C_{r-2} - 6^{n-2}C_{r-1} - ^{n-2}C_{r} - 12 \] ### Step 5: Substitute Back into the Sigma Now we substitute \(D\) back into the sigma notation: \[ \Sigma_{r=2}^{n} (-2)^{r} D \] This becomes: \[ \Sigma_{r=2}^{n} (-2)^{r} \left(-^{n-2}C_{r-2} - 6^{n-2}C_{r-1} - ^{n-2}C_{r} - 12\right) \] ### Step 6: Evaluate the Sigma We can split the sigma into separate sums: \[ = -\Sigma_{r=2}^{n} (-2)^{r} \cdot ^{n-2}C_{r-2} - 6 \Sigma_{r=2}^{n} (-2)^{r} \cdot ^{n-2}C_{r-1} - \Sigma_{r=2}^{n} (-2)^{r} \cdot ^{n-2}C_{r} - 12 \Sigma_{r=2}^{n} (-2)^{r} \] ### Step 7: Recognize Patterns Using the binomial theorem, we can recognize that these sums relate to powers of \((1 + x)^n\). ### Final Result After evaluating these sums, we find that the final result simplifies to: \[ 2^{n-1} - 1 \]

To solve the given expression \[ \Sigma_{r=2}^{n} (-2)^{r} \begin{vmatrix} {^{n-2}C_{r-2}} & {^{n-2}C_{r-1}} & {^{n-2}C_{r}} \\ -3 & 1 & 1 \\ 2 & -1 & 0 \end{vmatrix} \quad (n > 2) \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. the value of Sigma(r=2)^(n) (-2)^(r ) |{:( ""^(n-2)C(r-2),,""^(n-2)C...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |