Home
Class 12
MATHS
The determinant |(y^(2),-xy,x^(2)),(a,b,...

The determinant `|(y^(2),-xy,x^(2)),(a,b,c),(a',b',c')|` is equal to

A

(a) `|{:(bx+ay,,cx+by),(b'x+a'y,,c'x+b'y):}|`

B

(b)`|{:(ax+by,,bx+cy),(a'x+b'y,,b'x+c'y):}|`

C

(c) `|{:(bx+cy,,ax+by),(b'x+c'y,,a'x+b'y):}|`

D

(d)`|{:(ax+by,,bc+cy),(a'x+b'y,,b'x+c'y):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} y^2 & -xy & x^2 \\ a & b & c \\ a' & b' & c' \end{vmatrix} \), we will follow the steps outlined below: ### Step 1: Define the Determinant Let \( D = \begin{vmatrix} y^2 & -xy & x^2 \\ a & b & c \\ a' & b' & c' \end{vmatrix} \). ### Step 2: Apply Column Operations We can simplify the determinant by performing column operations. Specifically, we will multiply the first column by \( x \) and the third column by \( y \). This gives us: \[ D = \frac{1}{xy} \begin{vmatrix} xy^2 & -xy & yx^2 \\ a & b & c \\ a' & b' & c' \end{vmatrix} \] ### Step 3: Rewrite the Determinant Now, we can rewrite the determinant as: \[ D = \frac{1}{xy} \begin{vmatrix} xy^2 & -xy & yx^2 \\ a & b & c \\ a' & b' & c' \end{vmatrix} \] ### Step 4: Perform Row Operations Next, we will perform row operations to simplify the determinant further. We can add \( \frac{y}{x} \) times the second column to the first column: \[ D = \frac{1}{xy} \begin{vmatrix} xy^2 + yb & -xy & yx^2 \\ a + \frac{y}{x}b & b & c \\ a' + \frac{y}{x}b' & b' & c' \end{vmatrix} \] ### Step 5: Simplify the First Row We can simplify the first row further. The first entry becomes \( xy^2 + yb = y(xy + b) \): \[ D = \frac{1}{xy} \begin{vmatrix} y(xy + b) & -xy & yx^2 \\ a + \frac{y}{x}b & b & c \\ a' + \frac{y}{x}b' & b' & c' \end{vmatrix} \] ### Step 6: Factor Out \( y \) Factoring out \( y \) from the first column gives: \[ D = \frac{y}{xy} \begin{vmatrix} xy + b & -x & x^2 \\ a + \frac{y}{x}b & b & c \\ a' + \frac{y}{x}b' & b' & c' \end{vmatrix} \] ### Step 7: Final Determinant Now we can express the determinant as: \[ D = \frac{1}{x} \begin{vmatrix} xy + b & -x & x^2 \\ a + \frac{y}{x}b & b & c \\ a' + \frac{y}{x}b' & b' & c' \end{vmatrix} \] ### Step 8: Evaluate the Determinant Now we can evaluate the determinant using the properties of determinants. The final result will yield: \[ D = \begin{vmatrix} ax + by & -x & x^2 \\ a & b & c \\ a' & b' & c' \end{vmatrix} \] ### Conclusion Thus, the value of the determinant is: \[ D = \begin{vmatrix} ax + by & -x & x^2 \\ a & b & c \\ a' & b' & c' \end{vmatrix} \]

To solve the determinant \( D = \begin{vmatrix} y^2 & -xy & x^2 \\ a & b & c \\ a' & b' & c' \end{vmatrix} \), we will follow the steps outlined below: ### Step 1: Define the Determinant Let \( D = \begin{vmatrix} y^2 & -xy & x^2 \\ a & b & c \\ a' & b' & c' \end{vmatrix} \). ### Step 2: Apply Column Operations We can simplify the determinant by performing column operations. Specifically, we will multiply the first column by \( x \) and the third column by \( y \). This gives us: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

The determinant |y^2-x y x^2a b c a ' b ' c '| is equal to a. |b x+a y c x+b y b^(prime)x+a ' y c^(prime)x+b ' y| b. |a x+b y b x+c y a^(prime)x+b ' y b ' x+c ' y| c. |b x+c y a x+b y b^(prime)x+c ' y a^(prime)x+b ' y| d. |a x+b y b x+c y a^(prime)x+b ' y b^(prime)x+c ' y|

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

The determinant Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))| is divisible by

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

Let a ,b ,c be positive and not all equal. Show that the value of the determinant |[a, b, c],[b, c, a],[ c, a ,b]| is negative.

Value of the determinant |(x,1,1),(0,1+x, 1),(-y, 1+x, 1+y)| is (A) xy (B) xy(x+2) (C) x(x+1)(y+1) (D) xy(x+1)

Using the factor theorem it is found that a+b , b+c and c+a are three factors of the determinant |[-2a ,a+b, a+c],[ b+a,-2b,b+c],[c+a ,c+b,-2c]| . The other factor in the value of the determinant is

Using properties of determinant, Show that |{:((b+c)^(2),a^(2),a^(2)),(b^(2),(c+a)^(2),b^(2)),(c^(2),c^(2),(a+b)^(2)):}|=2abc(a+b+c)^(3)

If locus of mid point of any normal chord of the parabola : y^(2)=4x" is " x-a=(b)/(y^(2))+(y^(2))/(c ) , where a,b,c in N , then (a+b+c) equals to :

Using properties of determinants, prove that |{:(,a,b,b+c),(,c,a,c+a),(,b,c,a+b):}|=(a+b+c) (a-c)^2

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. The determinant |(y^(2),-xy,x^(2)),(a,b,c),(a',b',c')| is equal to

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |