Home
Class 12
MATHS
the value of the determinant |{:((a(1...

the value of the determinant
`|{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(2)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}|` is

A

dependant on `a_(i),i=1,2,3,4`

B

dependant on `b_(i),i=1,2,3,4`

C

dependant on `a_(ij), b_(i) i= 1,2,3,4`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} (a_1 - b_1)^2 & (a_1 - b_2)^2 & (a_1 - b_3)^2 & (a_1 - b_4)^2 \\ (a_2 - b_1)^2 & (a_2 - b_2)^2 & (a_2 - b_3)^2 & (a_2 - b_4)^2 \\ (a_3 - b_1)^2 & (a_3 - b_2)^2 & (a_3 - b_3)^2 & (a_3 - b_4)^2 \\ (a_4 - b_1)^2 & (a_4 - b_2)^2 & (a_4 - b_3)^2 & (a_4 - b_4)^2 \end{vmatrix} \] we will simplify the determinant using the identity \( (x - y)^2 = x^2 + y^2 - 2xy \). ### Step 1: Expand each element using the identity Using the identity \( (x - y)^2 = x^2 + y^2 - 2xy \), we can rewrite each element of the determinant: - The first row becomes: - \((a_1 - b_1)^2 = a_1^2 + b_1^2 - 2a_1b_1\) - \((a_1 - b_2)^2 = a_1^2 + b_2^2 - 2a_1b_2\) - \((a_1 - b_3)^2 = a_1^2 + b_3^2 - 2a_1b_3\) - \((a_1 - b_4)^2 = a_1^2 + b_4^2 - 2a_1b_4\) - The second row becomes: - \((a_2 - b_1)^2 = a_2^2 + b_1^2 - 2a_2b_1\) - \((a_2 - b_2)^2 = a_2^2 + b_2^2 - 2a_2b_2\) - \((a_2 - b_3)^2 = a_2^2 + b_3^2 - 2a_2b_3\) - \((a_2 - b_4)^2 = a_2^2 + b_4^2 - 2a_2b_4\) - The third and fourth rows are similarly expanded. ### Step 2: Rewrite the determinant Now, the determinant can be expressed as: \[ D = \begin{vmatrix} a_1^2 + b_1^2 - 2a_1b_1 & a_1^2 + b_2^2 - 2a_1b_2 & a_1^2 + b_3^2 - 2a_1b_3 & a_1^2 + b_4^2 - 2a_1b_4 \\ a_2^2 + b_1^2 - 2a_2b_1 & a_2^2 + b_2^2 - 2a_2b_2 & a_2^2 + b_3^2 - 2a_2b_3 & a_2^2 + b_4^2 - 2a_2b_4 \\ a_3^2 + b_1^2 - 2a_3b_1 & a_3^2 + b_2^2 - 2a_3b_2 & a_3^2 + b_3^2 - 2a_3b_3 & a_3^2 + b_4^2 - 2a_3b_4 \\ a_4^2 + b_1^2 - 2a_4b_1 & a_4^2 + b_2^2 - 2a_4b_2 & a_4^2 + b_3^2 - 2a_4b_3 & a_4^2 + b_4^2 - 2a_4b_4 \end{vmatrix} \] ### Step 3: Factor out common terms Notice that each row can be expressed as a linear combination of the squares of \(a_i\) and \(b_j\) and their products. This suggests that there may be dependencies among the rows. ### Step 4: Check for linear dependence If we observe the structure of the determinant, we can see that each row can be expressed in terms of the others, indicating that the rows are linearly dependent. ### Step 5: Conclusion Since the rows of the determinant are linearly dependent, the value of the determinant is: \[ D = 0 \]

To find the value of the determinant \[ D = \begin{vmatrix} (a_1 - b_1)^2 & (a_1 - b_2)^2 & (a_1 - b_3)^2 & (a_1 - b_4)^2 \\ (a_2 - b_1)^2 & (a_2 - b_2)^2 & (a_2 - b_3)^2 & (a_2 - b_4)^2 \\ (a_3 - b_1)^2 & (a_3 - b_2)^2 & (a_3 - b_3)^2 & (a_3 - b_4)^2 \\ (a_4 - b_1)^2 & (a_4 - b_2)^2 & (a_4 - b_3)^2 & (a_4 - b_4)^2 ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Find the coefficient of x in the determinant |{:((1+x)^(a_(1)b_(1)),(1+x)^(a_(1)b_(2)),(1+x)^(a_(1)b_(3))),((1+x)^(a_(2)b_(1)),(1+x)^(a_(2)b_(2)),(1+x)^(a_(2)b_(3))),((1+x)^(a_(3)b_(1)),(1+x)^(a_(3)b_(2)),(1+x)^(a_(3)b_(3))):}|

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))

The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is

The value of the determinant Delta = |((1 - a_(1)^(3) b_(1)^(3))/(1 - a_(1) b_(1)),(1 - a_(1)^(3) b_(2)^(3))/(1 - a_(1) b_(2)),(1 - a_(1)^(3) b_(3)^(3))/(1 - a_(1) b_(3))),((1 - a_(2)^(3) b_(1)^(3))/(1 - a_(2) b_(1)),(1 - a_(2)^(3) b_(2)^(3))/(1 - a_(2) b_(2)),(1 - a_(2)^(3) b_(3)^(3))/(1 - a_(2) b_(3))),((1 - a_(3)^(3) b_(1)^(3))/(1 - a_(3) b_(1)),(1 - a_(3)^(3) b_(2)^(3))/(1 - a_(3) b_(2)),(1 - a_(3)^(3) b_(3)^(3))/(1 - a_(3) b_(3)))| , is

Suppose a_(1),a_(2),a_(3) are in A.P. and b_(1),b_(2),b_(3) are in H.P. and let Delta=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))| then prove that

Prove that the value of the following determinant is zero: |{:(a_(1),,la_(1)+mb_(1),,b_(1)),(a_(2),,la_(2)+mb_(2),,b_(2)),( a_(3),,la_(3)+mb_(3),,b_(3)):}|

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) -a_(2))^(2) = (a_(1)-a_(4))^(2)

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. the value of the determinant |{:((a(1)-b(1))^(2),,(a(1)-b(2))^(2),,...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |