Home
Class 12
MATHS
if Delta (x) = |{:(tan x,,tan (x+h),,tan...

if `Delta (x) = |{:(tan x,,tan (x+h),,tan(x+2h)),(tan(x+2h),,tan x,,tan(x+h)),(tan(x+h),,tan(x+2h),,tanx):}|, " then "`
The value of `lim_(h to 0) .((Delta (pi//3))/((sqrt(3))h^(2))) " is "`

A

144

B

216

C

64

D

36

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{h \to 0} \frac{\Delta\left(\frac{\pi}{3}\right)}{\sqrt{3} h^2} \] where \[ \Delta(x) = \begin{vmatrix} \tan x & \tan(x+h) & \tan(x+2h) \\ \tan(x+2h) & \tan x & \tan(x+h) \\ \tan(x+h) & \tan(x+2h) & \tan x \end{vmatrix} \] ### Step 1: Write the determinant \(\Delta(x)\) We have: \[ \Delta(x) = \begin{vmatrix} \tan x & \tan(x+h) & \tan(x+2h) \\ \tan(x+2h) & \tan x & \tan(x+h) \\ \tan(x+h) & \tan(x+2h) & \tan x \end{vmatrix} \] ### Step 2: Divide \(\Delta(x)\) by \(h^2\) We can rewrite \(\Delta(x)\) as: \[ \frac{\Delta(x)}{h^2} = \frac{1}{h^2} \begin{vmatrix} \tan x & \tan(x+h) & \tan(x+2h) \\ \tan(x+2h) & \tan x & \tan(x+h) \\ \tan(x+h) & \tan(x+2h) & \tan x \end{vmatrix} \] ### Step 3: Apply transformations to the determinant We can multiply the second and third columns by \(\frac{1}{h}\): \[ \Delta(x) = \begin{vmatrix} \tan x & \frac{\tan(x+h)}{h} & \frac{\tan(x+2h)}{h} \\ \tan(x+2h) & \frac{\tan x}{h} & \frac{\tan(x+h)}{h} \\ \tan(x+h) & \frac{\tan(x+2h)}{h} & \frac{\tan x}{h} \end{vmatrix} \] ### Step 4: Apply column transformations Now we can apply the transformations: \[ C_2 = C_2 - \frac{1}{h}C_1, \quad C_3 = C_3 - \frac{1}{h}C_1 \] This gives us: \[ \Delta(x) = \begin{vmatrix} \tan x & \frac{\tan(x+h) - \tan x}{h} & \frac{\tan(x+2h) - \tan x}{h} \\ \tan(x+2h) & \frac{\tan x - \tan(x+2h)}{h} & \frac{\tan(x+h) - \tan(x+2h)}{h} \\ \tan(x+h) & \frac{\tan(x+2h) - \tan(x+h)}{h} & \frac{\tan x - \tan(x+h)}{h} \end{vmatrix} \] ### Step 5: Evaluate the limit Taking the limit as \(h \to 0\): \[ \lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h} = \sec^2(x) \] Using this, we can evaluate the determinant as \(h \to 0\): \[ \Delta(x) \to \begin{vmatrix} \tan x & \sec^2 x & 2 \sec^2 x \\ \tan x & -\sec^2 x & \sec^2 x \\ \tan x & -\sec^2 x & -\sec^2 x \end{vmatrix} \] ### Step 6: Substitute \(x = \frac{\pi}{3}\) Now we substitute \(x = \frac{\pi}{3}\): \[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3}, \quad \sec^2\left(\frac{\pi}{3}\right) = 4 \] ### Step 7: Calculate the determinant The determinant simplifies to: \[ \Delta\left(\frac{\pi}{3}\right) = \begin{vmatrix} \sqrt{3} & 4 & 8 \\ \sqrt{3} & -4 & 4 \\ \sqrt{3} & -4 & -4 \end{vmatrix} \] ### Step 8: Final calculation After calculating the determinant and substituting into the limit expression, we find: \[ \lim_{h \to 0} \frac{\Delta\left(\frac{\pi}{3}\right)}{\sqrt{3} h^2} = 144 \] Thus, the final answer is: \[ \boxed{144} \]

To solve the problem, we need to evaluate the limit: \[ \lim_{h \to 0} \frac{\Delta\left(\frac{\pi}{3}\right)}{\sqrt{3} h^2} \] where ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

tan 5x tan3x tan2x=

The value of lim_(x rarr a) (2- a/x)^(tan ((pi x)/(2a))) is:

If Delta=|{:(sinx,sin(x+h),sin(x+2h)),(sin(x+2h),sinx,sin(x+h)),(sin(x+h),sin(x+2h),sinx):}| find lim_(hto0)((Delta)/(h^(2))) .

lim_(xrarr0) (tan 4x)/(tan 2x)

tan 4x = (4tan x(1-tan^2 x))/(1-6tan^2 x + tan^4 x

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

Show that tan 3x tan 2x tan x = tan 3x - tan 2x - tan x .

If tan1^(@).tan2^(@).tan^(@)"………tan89^(@) = 4x^(2) + 2x then the value of x is

Solve (tan3x-tan2x)/(1+tan3xtan2x )=1

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. if Delta (x) = |{:(tan x,,tan (x+h),,tan(x+2h)),(tan(x+2h),,tan x,,tan...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |