Home
Class 12
MATHS
Value of |{:(1+x(1),,1+x(1)x,,1+x(1)x^(2...

Value of `|{:(1+x_(1),,1+x_(1)x,,1+x_(1)x^(2)),(1+x_(2),,1+x_(2)x,,1+x_(2)x^(2)),(1+x_(3),,1+x_(3)x,,1+x_(3)x^(2)):}|` depends upon

A

x only

B

`x_(1)`only

C

`x_(2)`only

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 + x_1 & 1 + x_1 x & 1 + x_1 x^2 \\ 1 + x_2 & 1 + x_2 x & 1 + x_2 x^2 \\ 1 + x_3 & 1 + x_3 x & 1 + x_3 x^2 \end{vmatrix} \] we will perform some operations on the columns to simplify it. ### Step 1: Column Operations We will perform the following column operations: - Replace \( C_1 \) with \( C_1 - C_2 \) - Replace \( C_2 \) with \( C_2 - C_3 \) This gives us: \[ D = \begin{vmatrix} (1 + x_1) - (1 + x_1 x) & (1 + x_1 x) - (1 + x_1 x^2) & 1 + x_1 x^2 \\ (1 + x_2) - (1 + x_2 x) & (1 + x_2 x) - (1 + x_2 x^2) & 1 + x_2 x^2 \\ (1 + x_3) - (1 + x_3 x) & (1 + x_3 x) - (1 + x_3 x^2) & 1 + x_3 x^2 \end{vmatrix} \] ### Step 2: Simplifying the Determinant Now simplifying the first two columns: \[ D = \begin{vmatrix} x_1(1 - x) & x_1 x(1 - x) & 1 + x_1 x^2 \\ x_2(1 - x) & x_2 x(1 - x) & 1 + x_2 x^2 \\ x_3(1 - x) & x_3 x(1 - x) & 1 + x_3 x^2 \end{vmatrix} \] ### Step 3: Factor Out Common Terms We can factor out \( (1 - x) \) from the first two columns: \[ D = (1 - x)^2 \begin{vmatrix} x_1 & x_1 x & 1 + x_1 x^2 \\ x_2 & x_2 x & 1 + x_2 x^2 \\ x_3 & x_3 x & 1 + x_3 x^2 \end{vmatrix} \] ### Step 4: Further Simplification Next, we can notice that the first two columns are proportional to \( x_1, x_2, x_3 \) and \( x_1 x, x_2 x, x_3 x \). So we can factor out \( x_1, x_2, x_3 \) from the first two columns: \[ D = (1 - x)^2 x_1 x_2 x_3 \begin{vmatrix} 1 & x & 1 + x^2 \\ 1 & x & 1 + x^2 \\ 1 & x & 1 + x^2 \end{vmatrix} \] ### Step 5: Identical Rows Now, we can see that the last determinant has identical rows, which means it evaluates to zero: \[ D = 0 \] ### Conclusion Thus, the value of the determinant depends on the values of \( x_1, x_2, x_3 \) and \( x \). Since the determinant evaluates to zero, we can conclude that the value of the determinant does not depend on any specific variable.

To find the value of the determinant \[ D = \begin{vmatrix} 1 + x_1 & 1 + x_1 x & 1 + x_1 x^2 \\ 1 + x_2 & 1 + x_2 x & 1 + x_2 x^2 \\ 1 + x_3 & 1 + x_3 x & 1 + x_3 x^2 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

Consider the quantities such that x_(1),x_(2),….x_(10),-1 lex_(1),x_(2)….,x_(10)le 1 and x_(1)^(3)+x_(2)^(3)+…+x_(10)^(3)=0 , then the maximum value of x_(1)+x_(2)+….+x_(10) is

If x_(1) , x_(2) and x_(3) are the positive roots of the equation x^(3)-6x^(2)+3px-2p=0 , p inR , then the value of sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1))) is equal to

Find a quadratic equation whose roots x_(1) and x_(2) satisfy the condition x_(1)^(2)+x_(2)^(2)=5,3(x_(1)^(5)+x_(2)^(5))=11(x_(1)^(3)+x_(2)^(3)) (assume that x_(1),x_(2) are real)

If xgt0 then (x-1)/(x+1)+(1)/(2)(x^(2)-1)/((x+1)^(2))+(1)/(3)(x^(3)-1)/((x+1)^(3))+....=

lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Value of |{:(1+x(1),,1+x(1)x,,1+x(1)x^(2)),(1+x(2),,1+x(2)x,,1+x(2)x^(...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |