Home
Class 12
MATHS
If the system of linear equation x+y+z=6...

If the system of linear equation `x+y+z=6,x+2y+3c=14 ,a n d2x+5y+lambdaz=mu(lambda,mu R)` has a unique solution, then

A

`lambda ne 8`

B

`lambda =8,mu ne 36`

C

`lambda=8 , mu =36`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the given system of linear equations has a unique solution, we can express the equations in matrix form and analyze the determinant of the coefficient matrix. The given equations are: 1. \( x + y + z = 6 \) 2. \( x + 2y + 3z = 14 \) 3. \( 2x + 5y + \lambda z = \mu \) We can write this system in matrix form \( A \mathbf{x} = \mathbf{b} \), where: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 5 & \lambda \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 6 \\ 14 \\ \mu \end{bmatrix} \] For the system to have a unique solution, the determinant of matrix \( A \) must be non-zero: \[ \text{det}(A) \neq 0 \] Now, we will calculate the determinant of matrix \( A \): \[ \text{det}(A) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 5 & \lambda \end{vmatrix} \] We can expand this determinant using the first row: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 2 & 3 \\ 5 & \lambda \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 3 \\ 2 & \lambda \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 3 \\ 5 & \lambda \end{vmatrix} = 2\lambda - 15 \) 2. \( \begin{vmatrix} 1 & 3 \\ 2 & \lambda \end{vmatrix} = 1\lambda - 6 = \lambda - 6 \) 3. \( \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = 5 - 4 = 1 \) Substituting these back into the determinant expression: \[ \text{det}(A) = 1(2\lambda - 15) - 1(\lambda - 6) + 1(1) \] Simplifying this: \[ \text{det}(A) = 2\lambda - 15 - \lambda + 6 + 1 \] \[ = \lambda - 8 \] For the system to have a unique solution, we require: \[ \lambda - 8 \neq 0 \] Thus, we find: \[ \lambda \neq 8 \] ### Final Answer: The condition for the system of equations to have a unique solution is \( \lambda \neq 8 \).

To determine the conditions under which the given system of linear equations has a unique solution, we can express the equations in matrix form and analyze the determinant of the coefficient matrix. The given equations are: 1. \( x + y + z = 6 \) 2. \( x + 2y + 3z = 14 \) 3. \( 2x + 5y + \lambda z = \mu \) We can write this system in matrix form \( A \mathbf{x} = \mathbf{b} \), where: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If the system of linear equations x+ y +z = 5 x+2y +2z = 6 x + 3y + lambdaz = mu, (lambda, mu in R) has infinitely many solutions, then the value of lambda + mu is

The set of all values of lambda for which the system of linear equations x - 2y - 2z = lambdax x + 2y + z = lambday -x -y = lambdaz has a non-trivial solution

For a unique value of mu & lambda , the system of equations given by {:(x+y+z=6),(x+2y+3z=14),(2x+5y+lambdaz=mu):} has infinitely many solutions , then (mu-lambda)/4 is equal to

The system of linear equations x + y + z = 2 2x + y -z = 3 3x + 2y + kz = 4 has a unique solution, if

The system of equations: x+y+z=5 , x+2y+3z=9 and x+3y+lambdaz=mu has a unique solution, if (a) lambda=5,mu=13 (b) lambda!=5 (c) lambda=5,mu!=13 (d) mu!=13

. For what values of lambda and mu the system of equations x+y+z=6, x+2y+3z=10, x+2y+lambdaz=mu has (i) Unique solution (ii) No solution (iii) Infinite number of solutions

If system of equation x + y + z = 6 ,x + 2y + 3z = 10, 3x + 2y + lambda z = mu has more than two solutions. Find (mu -lambda^2 )

Show that the system of equations 3x-y + 4z = 3, x + 2y-3z =-2 and 6x + 5y + lambdaz=-3 has at least one solution for any real number lambda. Find the set of solutions of lambda =-5

If the system of linear equations x-2y + kz = 1, 2x + y+ z = 2, 3x-y-kz = 3 has a solution (x, y, z), z ne 0 , then (x, y) lies on the straight line whose equation is

Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambdaz =mu the system has unique solution if (a) lambda ne 3 (b) lambda =3, mu =10 (c) lambda =3 , mu ne 10 (d) none of these

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. If the system of linear equation x+y+z=6,x+2y+3c=14 ,a n d2x+5y+lambda...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |