Home
Class 12
MATHS
Let lambda and alpha be real. Then the ...

Let `lambda` and `alpha` be real. Then the numbers of intergral values `lambda` for which the system of linear equations
`lambdax +(sin alpha) y+ (cos alpha) z=0`
`x + (cos alpha) y+ (sin alpha) z=0`
`-x+(sin alpha) y -(cos alpha) z=0` has non-trivial solutions is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the number of integral values of \(\lambda\) for which the given system of linear equations has non-trivial solutions. The equations are: 1. \(\lambda x + (\sin \alpha) y + (\cos \alpha) z = 0\) 2. \(x + (\cos \alpha) y + (\sin \alpha) z = 0\) 3. \(-x + (\sin \alpha) y - (\cos \alpha) z = 0\) ### Step-by-Step Solution **Step 1: Write the system in matrix form.** We can express the system of equations in matrix form as follows: \[ \begin{bmatrix} \lambda & \sin \alpha & \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ -1 & \sin \alpha & -\cos \alpha \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] **Step 2: Set up the determinant condition for non-trivial solutions.** For the system to have non-trivial solutions, the determinant of the coefficient matrix must be zero: \[ \text{Det} = \begin{vmatrix} \lambda & \sin \alpha & \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ -1 & \sin \alpha & -\cos \alpha \end{vmatrix} = 0 \] **Step 3: Calculate the determinant.** We can calculate the determinant using the cofactor expansion along the first row: \[ \text{Det} = \lambda \begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{vmatrix} - \sin \alpha \begin{vmatrix} 1 & \sin \alpha \\ -1 & -\cos \alpha \end{vmatrix} + \cos \alpha \begin{vmatrix} 1 & \cos \alpha \\ -1 & \sin \alpha \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{vmatrix} = -\cos^2 \alpha - \sin^2 \alpha = -1\) 2. \(\begin{vmatrix} 1 & \sin \alpha \\ -1 & -\cos \alpha \end{vmatrix} = -\cos \alpha + \sin \alpha = \sin \alpha - \cos \alpha\) 3. \(\begin{vmatrix} 1 & \cos \alpha \\ -1 & \sin \alpha \end{vmatrix} = \sin \alpha + \cos \alpha\) Putting it all together: \[ \text{Det} = \lambda (-1) - \sin \alpha (\sin \alpha - \cos \alpha) + \cos \alpha (\sin \alpha + \cos \alpha) \] **Step 4: Simplify the determinant expression.** \[ \text{Det} = -\lambda - \sin^2 \alpha + \sin \alpha \cos \alpha + \cos \alpha \sin \alpha + \cos^2 \alpha \] \[ = -\lambda - \sin^2 \alpha + 2 \sin \alpha \cos \alpha + \cos^2 \alpha \] Using the identity \(\sin^2 \alpha + \cos^2 \alpha = 1\): \[ = -\lambda + 1 + 2 \sin \alpha \cos \alpha \] \[ = -\lambda + 1 + \sin 2\alpha \] **Step 5: Set the determinant equal to zero.** Setting the determinant to zero gives: \[ -\lambda + 1 + \sin 2\alpha = 0 \] \[ \lambda = 1 + \sin 2\alpha \] **Step 6: Determine the range of \(\lambda\).** The range of \(\sin 2\alpha\) is \([-1, 1]\), thus: \[ \lambda = 1 + \sin 2\alpha \implies \lambda \in [0, 2] \] **Step 7: Find the integral values of \(\lambda\).** The integral values of \(\lambda\) in the interval \([0, 2]\) are: - \(0\) - \(1\) - \(2\) Thus, there are **3 integral values** of \(\lambda\). ### Final Answer The number of integral values of \(\lambda\) for which the system has non-trivial solutions is **3**.

To solve the problem, we need to determine the number of integral values of \(\lambda\) for which the given system of linear equations has non-trivial solutions. The equations are: 1. \(\lambda x + (\sin \alpha) y + (\cos \alpha) z = 0\) 2. \(x + (\cos \alpha) y + (\sin \alpha) z = 0\) 3. \(-x + (\sin \alpha) y - (\cos \alpha) z = 0\) ### Step-by-Step Solution ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

The number of values of alpha in [-10pi, 10pi] for which the equations (sin alpha)x-(cos alpha)y+3z=0, (cos alpha)x+(sin alpha)y-2z=0 and 2x+3y+(cos alpha)z=0 have nontrivial solution is

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

If x sin alpha = y cos alpha, prove that : x/(sec 2alpha) + y/(cosec 2 alpha) = x

For what value(s) of alpha will the system of linear equations alphax + 3y = alpha - 3 and 12x + alpha y = alpha has a unique solution?

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

Which is equivalent to (sin^2 alpha + cos^2 alpha )/(cos alpha ) ?

If a , b , c are non-zero, then the system of equations (alpha+a)x+alphay+alphaz=0, alphax+(alpha+b)y+alphaz=0, alphax+alphay+(alpha+c)z=0 has a non-trivial solution if

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Let lambda and alpha be real. Then the numbers of intergral values ...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |