Home
Class 12
MATHS
If f(alpha,beta)=|(cos alpha,-sin alpha,...

If `f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|,`then

A

f(300,200=f(400,200)

B

f(200,400)=f(200,600)

C

f(100,200)=f(200,200)

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by the function \( f(\alpha, \beta) \): \[ f(\alpha, \beta) = \begin{vmatrix} \cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos(\alpha + \beta) & -\sin(\alpha + \beta) & 1 \end{vmatrix} \] ### Step 1: Expand the Determinant We can expand the determinant using the method of cofactor expansion along the third column: \[ f(\alpha, \beta) = 1 \cdot \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix} - 1 \cdot \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \cos(\alpha + \beta) & -\sin(\alpha + \beta) \end{vmatrix} + 1 \cdot \begin{vmatrix} \sin \alpha & \cos \alpha \\ \cos(\alpha + \beta) & -\sin(\alpha + \beta) \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants 1. The first determinant: \[ \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix} = \cos^2 \alpha + \sin^2 \alpha = 1 \] 2. The second determinant: \[ \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \cos(\alpha + \beta) & -\sin(\alpha + \beta) \end{vmatrix} = -\cos \alpha \sin(\alpha + \beta) + \sin \alpha \cos(\alpha + \beta) \] Using the sine addition formula, we have: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Thus, the determinant simplifies to: \[ \sin \alpha \cos(\alpha + \beta) - \cos \alpha \sin(\alpha + \beta) = \sin(\alpha + \beta - \alpha) = \sin \beta \] 3. The third determinant: \[ \begin{vmatrix} \sin \alpha & \cos \alpha \\ \cos(\alpha + \beta) & -\sin(\alpha + \beta) \end{vmatrix} = -\sin \alpha \sin(\alpha + \beta) - \cos \alpha \cos(\alpha + \beta) \] Using the cosine addition formula, we have: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Thus, the determinant simplifies to: \[ -\sin \alpha (\sin \alpha \cos \beta + \cos \alpha \sin \beta) - \cos \alpha (\cos \alpha \cos \beta - \sin \alpha \sin \beta) \] ### Step 3: Combine the Results Now, substituting back into our expression for \( f(\alpha, \beta) \): \[ f(\alpha, \beta) = 1 - \sin \beta + \text{(third determinant)} \] ### Step 4: Final Expression After simplifying, we find: \[ f(\alpha, \beta) = 1 - \sin \beta + \text{(terms from the third determinant)} \] ### Conclusion The final expression for \( f(\alpha, \beta) \) can be further simplified based on specific values of \( \alpha \) and \( \beta \).

To solve the problem, we need to evaluate the determinant given by the function \( f(\alpha, \beta) \): \[ f(\alpha, \beta) = \begin{vmatrix} \cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos(\alpha + \beta) & -\sin(\alpha + \beta) & 1 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

Let f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| The value of l=int_(0)^(pi//2)e^(beta)(f(0,0)+f((pi)/(2),beta)+f((3pi)/(2),(pi)/(2)-beta))dbeta is

If cos(alpha+beta)=0 then sin(alpha+2beta)=

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

Let f(alpha, beta) = =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| if i =int_(-pi//2)^(pi//2) cos ^(2)beta(f(0,beta)+f(0,(pi)/(2)-beta))dbeta then i is

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

|[1,cos(alpha-beta), cos alpha] , [cos(alpha-beta),1,cos beta] , [cos alpha, cos beta, 1]|

By geometrical interpretation, prove that (i) sin(alpha+beta)=sin alpha cos beta+sinbeta cosalpha (ii) cos(alpha+beta)=cosalpha cosbeta -sin alpha sinbeta

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(co...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |